Molecular ensemble junctions with inter-molecular quantum interference.

Nat Commun

Department of Chemical Physics, School of chemistry, Tel Aviv University, Tel Aviv, 69978, Israel.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report of a high yield method to form nanopore molecular ensembles junctions containing ~40,000 molecules, in which the semimetal bismuth (Bi) is a top contact. Conductance histograms of these junctions are double-peaked (bi-modal), a behavior that is typical for single molecule junctions but not expected for junctions with thousands of molecules. This unique observation is shown to result from a new form of quantum interference that is inter-molecular in nature, which occurs in these junctions since the very long coherence length of the electrons in Bi enables them to probe large ensembles of molecules while tunneling through the junctions. Under such conditions, each molecule within the ensembles becomes an interference path that modifies via its tunneling phase the electronic structure of the entire junction. This new form of quantum interference holds a great promise for robust novel conductance effects in practical molecular junctions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374774PMC
http://dx.doi.org/10.1038/s41467-022-32476-wDOI Listing

Publication Analysis

Top Keywords

quantum interference
12
junctions
8
form quantum
8
molecular ensemble
4
ensemble junctions
4
junctions inter-molecular
4
inter-molecular quantum
4
interference
4
interference report
4
report high
4

Similar Publications

Comparing abstraction and exchange channels in the H + HBr reaction: A stereodynamical control perspective.

J Chem Phys

September 2025

Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China.

This study investigates the stereodynamical control of the H + HBr (v = 0, j = 1) reaction within 0.01-1.50 eV collision energy using the time-dependent wave packet method.

View Article and Find Full Text PDF

Recently, machine learning has had remarkable impact in scientific to everyday-life applications. However, complex tasks often require the consumption of unfeasible amounts of energy and computational power. Quantum computation may lower such requirements, although it is unclear whether enhancements are reachable with current technologies.

View Article and Find Full Text PDF

Mn-doped carbon dots-based fluorescent-colorimetric dual-mode probes for selective and sensitive detection of Cr(VI) ions and l-ascorbic acid via smartphone-integrated analytical platform.

Anal Chim Acta

November 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:

Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.

View Article and Find Full Text PDF

A new variety of nitrogen-doped carbon dots (NCDs) was produced using a hydrothermal synthesis method, based on propanedioic acid and barbituric acid as the sources of carbon and nitrogen. The NCDs were analyzed by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Zeta Potential,X-ray Diffraction(XRD),Thermogravimetry-Derivative Thermogravimetry(TG-DTG),Fourier transform infrared spectroscopy (FTIR) and Fluorescence Lifetime. The characterization results indicate that NCDs possess an average diameter of approximately 2.

View Article and Find Full Text PDF

Chemiluminescence offers distinct advantages for bioimaging and sensing, notably by eliminating the need for external light excitation and minimizing background interference. While the original phenoxy-1,2-dioxetanes have served as the cornerstone of chemiluminescent probe design, their efficiency is significantly compromised in aqueous environments. In this study, we report the development and evaluation of phenylamine-substituted 1,2-dioxetanes as a new class of luminophores with markedly enhanced performance under physiological conditions.

View Article and Find Full Text PDF