Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant cells exhibit remarkable plasticity of their differentiation states, enabling regeneration of whole plants from differentiated somatic cells. How they revert cell fate and express pluripotency, however, remains unclear. In this study, we demonstrate that transcriptional activation of auxin biosynthesis is crucial for reprogramming differentiated Arabidopsis (Arabidopsis thaliana) leaf cells. Our data show that interfering with the activity of histone acetyltransferases dramatically reduces callus formation from leaf mesophyll protoplasts. Histone acetylation permits transcriptional activation of PLETHORAs, leading to the induction of their downstream YUCCA1 gene encoding an enzyme for auxin biosynthesis. Auxin biosynthesis is in turn required to accomplish initial cell division through the activation of G2/M phase genes mediated by MYB DOMAIN PROTEIN 3-RELATED (MYB3Rs). We further show that the AUXIN RESPONSE FACTOR 7 (ARF7)/ARF19 and INDOLE-3-ACETIC ACID INDUCIBLE 3 (IAA3)/IAA18-mediated auxin signaling pathway is responsible for cell cycle reactivation by transcriptionally upregulating MYB3R4. These findings provide a mechanistic model of how differentiated plant cells revert their fate and reinitiate the cell cycle to become pluripotent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614439PMC
http://dx.doi.org/10.1093/plcell/koac218DOI Listing

Publication Analysis

Top Keywords

auxin biosynthesis
16
transcriptional activation
12
activation auxin
8
reprogramming differentiated
8
plant cells
8
cells revert
8
cell cycle
8
auxin
6
cells
5
biosynthesis
4

Similar Publications

Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.

View Article and Find Full Text PDF

Exogenous Melatonin Regulates Hormone Signalling and Photosynthesis-Related Genes to Enhance Brassica napus. Yield: A Transcriptomic Perspective.

J Pineal Res

September 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.

Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.

View Article and Find Full Text PDF

GA participates in FR light-induced internode elongation of cucumber by regulating the expression of genes/proteins related to aquaporins, expansins, cell wall biosynthesis, hormone metabolism, and signal transduction. This study investigated the effects of the interaction between far-red (FR) light and gibberellin (GA) on the internode elongation of cucumber (Cucumis sativus L. 'Zhongnong No.

View Article and Find Full Text PDF

Salicylic acid (SA), a long-characterized defense hormone, is increasingly recognized for its roles in plant growth and development. However, its involvement in mediating plant growth responses to environmental cues remains less understood. Here, we show that SA negatively affects thermomorphogenic growth in Arabidopsis thaliana.

View Article and Find Full Text PDF

Molecular mechanisms of lignin biosynthesis in Chimonanthus praecox: Morphological, physiological, transcriptomic, and functional gene analysis.

Plant Physiol Biochem

August 2025

Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China. Electronic address:

Chimonanthus praecox, an economically important tree species that is native to China, is widely cultivated as a woody cut flower and is highly demanded by consumers worldwide. The development and utilization of lignin can further enhance its economic value. However, there is currently no research on lignin biosynthesis in C.

View Article and Find Full Text PDF