Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite recent preclinical progress with oncolytic bacteria in cancer therapy, dose-limiting toxicity has been a long-standing challenge for clinical application. Genetic and chemical modifications for enhancing the bacterial tumor-targeting ability have been unable to establish a balance between increasing its specificity and effectiveness while decreasing side effects. Herein, we report a simple, highly efficient method for rapidly self-assembling a clinically used lipid on bacterium and for reducing its minimum effective dose and toxicity to normal organs. The resultant bacteria present the ability to reverse-charge between neutral and acidic solutions, thus enabling weak interactions with the negatively charged normal cells, hence increasing their biocompatibility with blood cells and with the immune system. Additionally, the lipid-coated bacteria exhibit a longer blood circulation lifetime and low tissue trapping compared with the wild-type strains. Thereby, the engineered bacteria show enhanced tumor specificity and effectiveness even at low doses. Multiple visualization techniques are used for vividly demonstrating the time course of bacterial circulation in the blood and normal organs after intravenous administration. We believe that these methods for biointerfacial lipid self-assembly and evaluation of bacterial systemic circulation possess vast potential in exquisitely fabricating engineered bacteria for cancer therapy in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c08684DOI Listing

Publication Analysis

Top Keywords

bacteria enhanced
8
enhanced tumor
8
low tissue
8
tissue trapping
8
bacteria cancer
8
cancer therapy
8
specificity effectiveness
8
normal organs
8
engineered bacteria
8
bacteria
6

Similar Publications

Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.

View Article and Find Full Text PDF

The emergence of antimicrobial resistance (AMR) Escherichia coli in poultry farming is a growing global public health concern, particularly in Bangladesh, where the use of antibiotics remains largely unregulated. This study aimed to determine the prevalence and AMR patterns of E. coli isolated from broiler chickens in Sylhet district of Bangladesh and to investigate the network of coexisting resistance traits among the isolates.

View Article and Find Full Text PDF

Terminalia arjuna, an important medicinal plant in traditional Indian systems, has been extensively studied for its cardioprotective bark. However, limited attention has been given to its fruit, which contains several biologically active phytochemicals with potential antioxidant, anti-inflammatory, and immunomodulatory properties. This study aimed to isolate and partially purify phytoactive compounds from the fruit of T.

View Article and Find Full Text PDF

Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.

View Article and Find Full Text PDF

The esterase gene encoding EstJN1 of Clostridium butyricum, which was isolated from the pit cellar of Chinese liquor facility, was expressed. EstJN1 was identified as a novel GDSL esterase belonging to family II. The enzyme demonstrated a marked substrate preference for p-nitrophenyl butyrate, with optimal activity at a temperature of 40 ℃ and a pH of 7.

View Article and Find Full Text PDF