Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrochemical reduction of biomass-derived 5-hydroxymethylfurfural (HMF) represents an elegant route toward sustainable value-added chemicals production that circumvents the use of fossil fuel and hydrogen. However, the reaction efficiency is hampered by the high voltage and low activity of electrodes (Cu, Bi, Pb). Herein, we report a Ru Cu single-atom alloy (SAA) catalyst with isolated Ru atoms on Cu nanowires that exhibits an electrochemical reduction of HMF to 2,5-dihydroxymethylfuran (DHMF) with promoted productivity (0.47 vs. 0.08 mmol cm  h ) and faradic efficiency (FE) (85.6 vs. 71.3 %) at -0.3 V (vs. RHE) compared with Cu counterpart. More importantly, the FE (87.5 %) is largely retained at high HMF concentration (100 mM). Kinetic studies by using combined electrochemical techniques suggest disparate mechanisms over Ru Cu and Cu, revealing that single-atom Ru promotes the dissociation of water to produce H* species that effectively react with HMF via an electrocatalytic hydrogenation (ECH) mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202209849DOI Listing

Publication Analysis

Top Keywords

electrocatalytic hydrogenation
8
single-atom alloy
8
electrochemical reduction
8
hydrogenation 5-hydroxymethylfurfural
4
5-hydroxymethylfurfural promoted
4
promoted single-atom
4
alloy catalyst
4
catalyst electrochemical
4
reduction biomass-derived
4
biomass-derived 5-hydroxymethylfurfural
4

Similar Publications

Electrocatalytic synthesis of ammonia is a sustainable, cost-effective alternative method for producing renewable electricity and can operate under milder conditions than the traditional Haber-Bosch method. We report direct laser-induced synthesis of copper nanocatalysts embedded in graphitic films for the synthesis of ammonia. Laser-induced metal-embedded graphene (m-LIG) offers many advantages, such as fast and simple synthesis, shape design of the electrodes, and direct printing on any substrate, including thermally sensitive plastics.

View Article and Find Full Text PDF

Electrocatalytic water oxidation with bioinspired cubane-type Co complexes.

Dalton Trans

September 2025

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, Ciudad de México, 04510, Mexico.

Synthesis, characterization, and electrocatalytic water oxidation studies of the cubane-type complexes [(μ-)CoCl(MeOH)] (1) and [(μ-)CoCl(MeOH)] (2) are herein reported. Cubanes 1 and 2 were obtained in high yields under mild conditions by self-assembly of the ligands = 1--2-benzimidazolylmethanol and = 1-methyl-2-benzimidazolylmethanol with CoCl·6HO in basic methanolic solution. Both compounds feature a cubane-type structure in which the central {CoO} units are built by four Co centers coordinated by alkoxide-bridged oxygen and nitrogen atoms from the deprotonated ligands and stabilized by MeOH molecules and chloride ions.

View Article and Find Full Text PDF

pH-triggered Schottky heterojunctions for NIR-II-activated and tumor-specific pyroelectrodynamic and photothermal therapy.

J Colloid Interface Sci

September 2025

Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China. Electronic address:

Pyroelectrodynamic therapy (PEDT) of tumors faces challenges due to its low electrocatalytic efficiency at mild temperature and the potential for off-target toxicity to healthy tissue. To overcome these issues, we have engineered pyroelectric nanoparticles (NPs) that feature a pH-triggered heterojunction structure and tumor-selective reactive oxidative species (ROS) production, faclitating synergistic PEDT and mild photothermal therapy (PTT). Herein, molybdenum trioxide (MoO) was deposited in-situ on the surface of tetragonal BaTiO (tBT) to create tBT@MO.

View Article and Find Full Text PDF

The sluggish kinetics of the oxygen evolution reaction (OER) in alkaline water electrolysis lead to high overpotentials, limiting cost-effective green hydrogen production. Ni-based catalysts, recognized as promising OER electrocatalysts, require electronic structure modulation to enhance performance. However, under oxidizing conditions, Ni-based materials undergo surface reconstruction with significant electronic alterations, rendering bulk-phase studies less practical.

View Article and Find Full Text PDF

Harnessing Electrocatalytic Coupling of Carbon Dioxide and Methanol for High-Efficiency Formic Acid Production.

Angew Chem Int Ed Engl

September 2025

Center for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia.

The coupling of electrocatalytic CO reduction (ECR) and methanol oxidation reaction (MOR) presents a promising strategy for simultaneous cogeneration of formic acid (FA) at both cathode and anode. However, sluggish kinetics, low selectivity and efficiency hinder practical application. Herein, we demonstrate an integrated ECR||MOR system employing CuBi cathode and NiCo anode for energy-efficient FA cogeneration.

View Article and Find Full Text PDF