98%
921
2 minutes
20
Ralstonia solanacearum is a soil-borne phytopathogen, and it can cause bacterial wilt disease in a variety of key crops around the world, thus resulting in enormous financial losses. However, there is a lack of effective, green, and safe prevention and control measures against increasingly devastating bacterial wilt disease. Bacteriophages (phages) are considered as potential biocontrol agents against bacterial wilt disease. Although many phages infecting R. solanacearum have been isolated, so far, these Ralstonia phages are still insufficient to deal with the diversity of the bacteria of R. solanacearum. In this study, a novel lytic bacteriophage vB_RsoP_BMB50 infecting multiple R. solanacearum was isolated from tomato fields in Dalian, China. Transmission electron microscopy and genomics analysis indicated that vB_RsoP_BMB50 belonged to the subfamily Okabevirinae, Autographiviridae family, and order Caudovirales, and it comprised a double-stranded DNA with a full length of 43,665 bp and a mean G+C content of 61.79%, containing 53 open reading frames (ORFs). This novel phage exhibited a large burst size, high temperature stability (4-50 °C), and strong pH tolerance (pH 5-10). Comparative analyses and phylogenetic analyses revealed that vB_RsoP_BMB50 represented a novel Ralstonia phage genus since it exhibited a low sequence similarity to other phages in the GenBank database. Due to its broad lytic spectrum, high thermal stability, and strong pH tolerance, vB_RsoP_BMB50 is considered as an effective candidate biocontrol agent against bacterial wilt disease caused by R. solanacearum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-022-02940-3 | DOI Listing |
Plant Biol (Stuttg)
September 2025
Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
Conventional methods to combat phytopathogens have ecological implications: chemical fertilizers pollute the environment, while bioinoculants are often inconsistent under field conditions. Microbiome-assisted rhizosphere engineering aims to re-structure the rhizosphere microbiome to promote plant growth and/or mitigate stress. This study employs a strategy based on rhizosphere engineering to combat stress caused by Fusarium udum in Cajanus cajan, by generating synthetic microbial communities (SMCs).
View Article and Find Full Text PDFPest Manag Sci
September 2025
College of Life Science and Agroforestry, Qiqihar University, Qiqihar, China.
Background: Watermelon production is threatened by Fusarium oxysporum f. sp. niveum (Fon) in continuous cropping systems.
View Article and Find Full Text PDFNew Phytol
August 2025
Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
Plants have developed a complex immune system to detect and respond to invading pathogens. A critical aspect of this defense relies on regulatory mechanisms that control the activation of immune responses, ensuring these are efficient yet do not compromise overall plant performance. Ralstonia solanacearum is a soil-borne bacterial pathogen that causes bacterial wilt disease in many plant species.
View Article and Find Full Text PDFMicrob Ecol
August 2025
Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, C
The rhizosphere microbiome plays a pivotal role in plant health by mediating interactions between hosts, beneficial microbes, and pathogens. However, the ecological mechanisms underlying microbial consortia that suppress soil-borne diseases remain largely unexplored. In this study, we investigated how the biocontrol bacterium Bacillus velezensis SQR9 influences the assembly of the cucumber rhizosphere bacterial community in the presence of the pathogenic fungus Fusarium oxysporum f.
View Article and Find Full Text PDFJ Agric Food Chem
August 2025
College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou 450046, China.
The homocysteine S-methyltransferase (HMT) family plays a crucial role in plant metabolism and stress adaptation; however, its functional characteristics in peanuts and its association with biotic stress tolerance have not been thoroughly investigated. To bridge this knowledge gap, we identified 10 AhHMT family members that exhibit significant evolutionary conservation with HMT homologues from leguminous and solanaceous species. Collinearity analyses further revealed conserved synteny between AhHMTs and orthologs in wild peanut, , soybean, and other plant species.
View Article and Find Full Text PDF