Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetic wound (DW) is a secondary application of uncontrolled diabetes and affects about 42.2% of diabetics. If the disease is left untreated/uncontrolled, then it may further lead to amputation of organs. In recent years, huge research has been done in the area of wound dressing to have a better maintenance of DW. These include gauze, films, foams or, hydrocolloid-based dressings as well as polysaccharide- and polymer-based dressings. In recent years, scaffolds have played major role as biomaterial for wound dressing due to its tissue regeneration properties as well as fluid absorption capacity. These are three-dimensional polymeric structures formed from polymers that help in tissue rejuvenation. These offer a large surface area to volume ratio to allow cell adhesion and exudate absorbing capacity and antibacterial properties. They also offer a better retention as well as sustained release of drugs that are directly impregnated to the scaffolds or the ones that are loaded in nanocarriers that are impregnated onto scaffolds. The present review comprehensively describes the pathogenesis of DW, various dressings that are used so far for DW, the limitation of currently used wound dressings, role of scaffolds in topical delivery of drugs, materials used for scaffold fabrication, and application of various polymer-based scaffolds for treating DW.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273440PMC
http://dx.doi.org/10.1155/2022/1659338DOI Listing

Publication Analysis

Top Keywords

wound dressing
8
impregnated scaffolds
8
scaffolds
6
dressings
5
progress development
4
development dressings
4
dressings diabetic
4
diabetic wounds
4
wounds special
4
special emphasis
4

Similar Publications

Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.

View Article and Find Full Text PDF

Hemostatic intervention at the bleeding site during early-phase wound management plays a crucial role in reducing trauma-induced complications and mortality, while advanced wound dressings facilitate hemorrhage control, exudate management, and antimicrobial protection to promote optimal healing outcomes. To address these issues, we developed a multifunctional collagen/silk fibroin/Mg(OH)₂ (Col/SF/Mg(OH)₂) composite sponge combining enhanced mechanical strength, rapid hemostasis, and broad-spectrum antibacterial activity. The incorporation of silk fibroin (SF) through covalent crosslinking increased the elastic modulus by 4.

View Article and Find Full Text PDF

Purpose: To demonstrate the use of negative pressure wound therapy (NPWT) and other reconstructive techniques in the reconstruction of large tissue defects resulting from periocular necrotizing fasciitis (NF).

Methods: Description of technique with 3 illustrative cases and accompanying photographic montage.

Results: Technique: Debridement successfully spared post-septal tissues and the lid margin in all cases.

View Article and Find Full Text PDF

An Antibacterial and Electroactive Chitosan-Based Dressing with Dual Stimulus-Responsive Drug Delivery for Wound Healing.

Macromol Rapid Commun

September 2025

Key Laboratory of Textile Science & Technology, College of Textiles, Ministry of Education, Donghua University, Shanghai, China.

Persistent bacterial infections remain a major challenge in wound management. Although drug-loaded wound dressings have gained increasing attention, their therapeutic efficacy is often hindered by uncontrolled drug release and a lack of electrical signal responsiveness. Herein, an antibacterial dressing (CCS-PC) with electroactivity and stimulus-responsive drug release properties was fabricated via electro-assembly, wherein chitosan and ciprofloxacin hydrochloride (CIP) were co-deposited onto polypyrrole (PPy)-coated gauze.

View Article and Find Full Text PDF

Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.

View Article and Find Full Text PDF