Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Loss of dopamine (DA) is one of the primary features of Parkinson's disease (PD); however, imbalances of non-dopaminergic neurotransmitters significantly contribute to the disabilities noted in advanced PD patients. DA-9805 is the ethanolic extraction of the root bark of × Andrews (), the root of (Hoffm.) Benth. and Hook.f. ex Franch. and Sav. () and the root of L. (), which have been widely utilized as an enhancer of motor function in East Asia. This study aimed to investigate whether DA-9805 modified motor dysfunctions and imbalances associated with DA and other neurotransmitters in a 6-hydroxydopamine-induced PD mouse. We confirmed the expressions of proteins related with neurotransmissions in the striatum. In addition, we measured the striatal neurotransmitters using HPLC and analyzed their correlation. DA-9805 significantly improved motor impairments and restored the altered levels of neurotransmitters in the striatum. Moreover, DA-9805 improved the altered expressions of tyrosine hydroxylase (TH), DA transporter, and choline acetyltransferase (ChAT) in the ipsilateral part of mouse striatum or SNpc, which implies the neuroprotection. We also found that the level of striatal acetylcholine (Ach) has the moderate negative correlation with motor functions and TH expression in the SNpc. This study indicates that DA-9805 restores motor dysfunctions by normalizing the increased levels of striatal Ach via modulating DA transmission and ChAT expressions as well as its neuroprotective effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240257PMC
http://dx.doi.org/10.3389/fphar.2022.903664DOI Listing

Publication Analysis

Top Keywords

restores motor
8
parkinson's disease
8
motor dysfunctions
8
da-9805 improved
8
da-9805
6
motor
6
da-9805 herbal
4
herbal mixture
4
mixture restores
4
motor manifestations
4

Similar Publications

Targeting KCNN4 channels modulates microglial activation and apoptosis in a PD-relevant inflammatory model.

Biomed Pharmacother

September 2025

Department and Graduate Institute of Pharmacology, College of Pharmacy, National Defense Medical University, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical University, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, National Defense M

Parkinson's disease (PD) is characterized by chronic neuroinflammation and progressive dopaminergic neurodegeneration, driven primarily by the activation of microglia and associated apoptotic pathways. The intermediate-conductance calcium-activated potassium channel KCNN4 has recently emerged as a potential therapeutic target, yet its role in chronic neurodegenerative conditions remains underexplored. In this study, we investigated whether pharmacological inhibition of KCNN4 using TRAM-34 can modulate both inflammatory and apoptotic responses in an LPS-induced mouse model of PD.

View Article and Find Full Text PDF

Dimethyl fumarate mitigates osteoarthritis progression through Nrf2 activation-mediated suppression of oxidative stress and subchondral osteoclastogenesis.

Int Immunopharmacol

September 2025

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China. Electronic address:

Osteoarthritis (OA) is a degenerative joint disease associated with imbalanced subchondral bone remodeling, and there is currently no curative treatment available. In OA, excessive osteoclast activity leads to bone loss and inflammatory responses. Dimethyl fumarate (DMF), an Nrf2 activator already used in treating psoriasis and multiple sclerosis, may alleviate OA by suppressing oxidative stress and osteoclastogenesis.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a severe traumatic disorder of the central nervous system, often resulting in partial or complete loss of sensory and motor functions. Ferroptosis, a lipid peroxidation-driven apoptotic process triggered by iron overload, has emerged as a novel form of programmed cell death and a focal point in post-SCI cell death research. Exosomes (Exo), as delivery vehicles, exhibit multiple advantages, including superior encapsulation capacity, high targeting efficiency, and enhanced blood-brain barrier penetration to reach the central nervous system.

View Article and Find Full Text PDF

POU6F1 promote lumbar motor circuit reorganization following spinal cord injury.

Neurobiol Dis

September 2025

Mudanjiang Collaborative Innovation Center for development and application of Northern Medicine Resources, Mudanjiang, PR China; Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang, PR China. Electronic address:

Spinal cord injury (SCI) causes irreversible motor deficits due to disrupted lumbar circuitry. However, transcriptional mechanisms in distal lumbar circuits are poorly understood. We identify POU6F1 as a critical transcriptional regulator in spinal lumbar segment (SLS, L3-L5) motor circuit regeneration.

View Article and Find Full Text PDF

Unlabelled: Cervical spinal cord injury (SCI) impairs sensorimotor and autonomic functions. We investigated the effects of lumbosacral transcutaneous spinal cord stimulation (tSCS) on urinary bladder, bowel, and sexual function as well as cardiovascular and sensorimotor functions in one individual with chronic clinically motor-complete cervical SCI, 11 years post-injury. Following 30 sessions of lumbosacral tSCS, the individual presented with improved urinary bladder compliance as well as anorectal function in parallel with mitigation of the severity of autonomic dysreflexia during filling cystometry and anorectal manometry.

View Article and Find Full Text PDF