Publications by authors named "Lucas Rempel"

Unlabelled: Cervical spinal cord injury (SCI) impairs sensorimotor and autonomic functions. We investigated the effects of lumbosacral transcutaneous spinal cord stimulation (tSCS) on urinary bladder, bowel, and sexual function as well as cardiovascular and sensorimotor functions in one individual with chronic clinically motor-complete cervical SCI, 11 years post-injury. Following 30 sessions of lumbosacral tSCS, the individual presented with improved urinary bladder compliance as well as anorectal function in parallel with mitigation of the severity of autonomic dysreflexia during filling cystometry and anorectal manometry.

View Article and Find Full Text PDF

Background: Breast reconstruction is an essential consideration for patients with breast cancer undergoing a mastectomy. Patients commonly report inadequate education as an important cause of dissatisfaction with breast reconstructive care. Information sources for breast reconstruction vary in quality, accuracy, and validity.

View Article and Find Full Text PDF

This study evaluated whether cervical transcutaneous spinal cord stimulation (tSCS) in conjunction with rehabilitation on upper extremity function alters blood pressure regulation in individuals with cervical spinal cord injury. This study is a secondary analysis of the Up-LIFT trial, a prospective single-arm multicenter trial designed to evaluate the safety and efficacy of tSCS in conjunction with rehabilitation (tSCS ​+ ​rehab) on upper extremity function in individuals with chronic cervical spinal cord injury. Utilizing this large data set obtained from 60 individuals across 14 international sites, we compared blood pressure and heart rate measurements obtained before, during and after each training session during both the wash-in Rehab alone period and the tSCS ​+ ​rehab period of the trial.

View Article and Find Full Text PDF
Article Synopsis
  • Autonomic dysfunctions significantly impact individuals after spinal cord injuries but are often overlooked compared to motor recovery.
  • The review focuses on understanding these dysfunctions through the lens of autonomic anatomy and physiology.
  • It aims to raise awareness and highlight relevant clinical data concerning autonomic issues post-SCI.
View Article and Find Full Text PDF

Eosinophils are a type of granulocyte named after the presence of their eosin-stained granules. Traditionally, eosinophils have been best known to play prominent roles in anti-parasitic responses and mediating allergic reactions. Knowledge of their behaviour has expanded with time, and they are now recognized to play integral parts in the homeostasis of gastrointestinal, respiratory, skeletal muscle, adipose, and connective tissue systems.

View Article and Find Full Text PDF

Since its regulatory approval over a half-century ago, botulinum toxin has evolved from one of the most potent neurotoxins known to becoming routinely adopted in clinical practice. Botulinum toxin, a highly potent neurotoxin produced by Clostridium botulinum, can cause botulism illness, characterized by widespread muscle weakness due to inhibition of acetylcholine transmission at neuromuscular junctions. The observation of botulinum toxin's anticholinergic properties led to the investigation of its potential benefits for conditions with an underlying etiology of cholinergic transmission, including autonomic nervous system dysfunction.

View Article and Find Full Text PDF

Purpose: Spinal cord injury (SCI) leads to sensorimotor impairments; however, it can also be complicated by significant autonomic dysfunction, including cardiovascular and lower urinary tract (LUT) dysfunctions. Autonomic dysreflexia (AD) is a dangerous cardiovascular complication of SCI often overlooked by healthcare professionals. AD is characterized by a sudden increase in blood pressure (BP) that can result in severe cardiovascular and cerebrovascular complications.

View Article and Find Full Text PDF

Therapeutic angiogenesis represents a promising avenue to revascularize the ischemic heart. Its limited success is partly due to our poor understanding of the cardiac stroma, specifically mural cells, and their response to ischemic injury. Here, we combine single-cell and positional transcriptomics to assess the behavior of mural cells within the healing heart.

View Article and Find Full Text PDF

An evolving field, nanotechnology has made its mark in the fields of nanoscience, nanoparticles, nanomaterials, and nanomedicine. Specifically, metal nanoparticles have garnered attention for their diverse use and applicability to dressings for wound healing due to their antimicrobial properties. Given their convenient integration into wound dressings, there has been increasing focus dedicated to investigating the physical, mechanical, and biological characteristics of these nanoparticles as well as their incorporation into biocomposite materials, such as hydrogel scaffolds for use in lieu of antibiotics as well as to accelerate and ameliorate healing.

View Article and Find Full Text PDF

Eosinophils, best known for their role in anti-parasitic responses, have recently been shown to actively participate in tissue homeostasis and repair. Their regulation must be tightly controlled, as their absence or hyperplasia is associated with chronic disease (e.g.

View Article and Find Full Text PDF

Aim: Fibrosis is the most common complication from chronic diseases, and yet no therapy capable of mitigating its effects is available. Our goal is to unveil specific signaling regulating the fibrogenic process and to identify potential small molecule candidates that block fibrogenic differentiation of fibro/adipogenic progenitors.

Method: We performed a large-scale drug screen using muscle-resident fibro/adipogenic progenitors from a mouse model expressing EGFP under the Collagen1a1 promotor.

View Article and Find Full Text PDF