Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Enteric glial cells (EGCs) constitute the majority of the neural population of the enteric nervous system and are found in all layers of the gastrointestinal tract. It is active in enteric functions such as immunomodulation, participating in inflammation and intestinal epithelial barrier (IEB) regulation. Both EGCs and IEB have been described as altered in Parkinson's disease (PD). Using an animal model of PD induced by 6-hydroxydopamine (6-OHDA), we investigated the effect of ongoing neurodegeneration on EGCs and inflammatory response during short periods after model induction. C57Bl/6 male mice were unilaterally injected with 6-OHDA in the striatum. Compared to the control group, 6-OHDA animals showed decreased relative water content in their feces from 1 w after model induction. Moreover, at 1 and 2 w post-induction, groups showed histopathological changes indicative of intestinal inflammation. We identified an increase in IBA1 and GFAP levels in the intestinal mucosa. At an earlier survival of 48 h, we detected an increase in GFAP in the neuromuscular layer, suggesting that it was a primary event for the upregulation of GDNF, TNF-α, and occludin in the intestinal mucosa observed after 1 w. Within 2 w, we identified a decrease in the expression of occludin barrier proteins. Thus, EGCs modulation may be an early enteric signal induced by parkinsonian neurodegeneration, followed by inflammatory and dysmotility signs besides IEB modification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2022.06.013DOI Listing

Publication Analysis

Top Keywords

enteric glial
8
parkinson's disease
8
induced 6-hydroxydopamine
8
model induction
8
intestinal mucosa
8
enteric
5
glial cell
4
cell reactivity
4
reactivity colonic
4
colonic layers
4

Similar Publications

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF

Microbiota, which plays a vital role in susceptibility to Clostridioides difficile infection (CDI), synthesizes butyrate. Enteric glia is a component of the enteric nervous system (ENS) and is affected by C. difficile toxins A (TcdA) and B (TcdB).

View Article and Find Full Text PDF

Neuro-Immuno-Stromal Context in Colorectal Cancer: An Enteric Glial Cell-Driven Prognostic Model via Machine Learning Predicts Survival, Recurrence, and Therapy Response.

Exp Cell Res

September 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China. Electronic address:

Background: Enteric glial cells (EGCs) have been implicated in colorectal cancer (CRC) progression. This study aimed to develop and validate a prognostic model integrating EGC- and CRC-associated gene expression to predict patient survival, recurrence, metastasis, and therapy response.

Methods: Bulk and single-cell RNA sequencing data were analyzed, and a machine learning-based model was constructed using the RSF random forest algorithm.

View Article and Find Full Text PDF

Enteric glial cells (EGCs) play an important role in the pathogenesis of irritable bowel syndrome (IBS). Phosphodiesterase-4 (PDE4) functions as a catalyzing enzyme targeting hydrolyzation of intracellular cyclic adenosine monophosphate (cAMP). Increased PDE4 activity promotes excessive production of pro-inflammatory cytokines and chemokines in various immune and epithelial cells, exacerbating immune cell activation and infiltration in inflamed tissues, inhibition of PDE4 has been proven to be an important strategy for inflammatory and autoimmune diseases.

View Article and Find Full Text PDF

Stool Glial Fibrillary Acidic Protein Is Elevated in Progressive Multiple Sclerosis.

Neurol Neuroimmunol Neuroinflamm

November 2025

Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.

Objectives: The gut microbiota and altered intestinal physiology have been implicated in multiple sclerosis (MS). Enteric glial cells regulate enteric nervous and immune function and express glial fibrillary acidic protein (GFAP) and S100β. Serum GFAP and neurofilament light chain can predict disease worsening; however, no clear markers differentiate relapsing from progressive disease.

View Article and Find Full Text PDF