Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

On the basis of the boron neutron capture therapy (BNCT) modality, we have designed and synthesized a zinc gallate (ZnGaO)-based nanoformulation for developing an innovative theranostic approach for cancer treatment. Initially, the (ZnGaCrO or ZnGaO:(0.5%)Cr persistent luminescence nanoparticles (PLNPs) embedded on silica matrix were synthesized. Their surface functionalization was performed using organic synthesis strategies to attach the amine functional moieties which were further coupled with poly(vicinal diol). These diols were helpful for conjugation with B(OH), which subsequently served to couple with an in-house-synthesized variant of pH-(low)-insertion peptide (pHLIP) finally giving a tumor-targeting nanoformulation. Most importantly, the polymeric diols helped in conjugation of a substantial number of B to provide the therapeutic dose required for effective BNCT. This nanoformulation internalized substantially (∼80%) to WEHI-164 cancer cells within 6 h. Tumor homing studies indicated that the accumulation of this formulation at the acidic tumor site was within 2 h. The evaluation of the formulation against WEHI-164 cancer cells followed by neutron irradiation revealed its potent cytotoxicity with IC ∼ 25 μM. In the case of studies on animal models, the melanoma-induced C57BL/6 and fibrosarcoma-induced BALB/c mice were treated with formulations through intratumoral and intravenous injections, respectively, followed by neutron irradiation, leading to a significant killing of the cancer cells, which was evidenced by a reduction in tumor volume (75-80%) as compared with a control tumor. Furthermore, the histopathological studies confirmed a damaging effect only on tumor cells, while there was no sign of damage to the vital organs in treated mice as well as in controls.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.2c00081DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
cancer treatment
8
boron neutron
8
neutron capture
8
capture therapy
8
wehi-164 cancer
8
neutron irradiation
8
tumor
6
cancer
5
multimodal applications
4

Similar Publications

Dual-Mode Hybrid Discharge Plasma-Activated Injectable Hydrosol for Enhanced Immunotherapeutic Cancer Therapy.

Adv Healthc Mater

September 2025

Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

Although cold atmospheric plasma is a promising therapeutic technique for tumor immunotherapy via reactive oxygen and nitrogen species (RONS), the challenges associated with the generation and delivery of these RONS hamper clinical adoption. Herein, a dual-mode hybrid discharge plasma-activated sodium alginate hydrosols (PAH) is proposed to enhance the antitumor immune response. Gaseous highly reactive RONS are generated by dual-mode hybrid plasma produced by mixed O and NO modes, which are converted into aqueous RONS in PAH via gas-liquid reactions between plasma and hydrosols.

View Article and Find Full Text PDF

Compared to sun-exposed melanomas, acral melanomas are genetically diverse and occur in areas with low sun exposure and high mechanical loads. During metastatic growth, melanomas invade from the epidermis to the dermis layers through dense tumor stroma and are exposed to fibrillar collagen architectures and mechanical stresses. However, the role of these signals during acral melanoma pathogenesis is not well understood.

View Article and Find Full Text PDF

Purpose: We reviewed recent advancements in the characterization of intraductal oncocytic papillary neoplasm (IOPN) of the pancreas, with a specific focus on developments in immunohistochemical markers, molecular pathology, and pathogenic mechanisms over the past ten years (2015-2024). Through comprehensive analysis of current literature, we aimed to elucidate the evolving understanding of IOPN's biological behavior and diagnostic features, while identifying potential areas for future research in this distinctive pancreatic neoplasm.

Methods: English-language articles on IOPN were searched from Pubmed from the first report of IOPN of the pancreas in 2015 to 2024.

View Article and Find Full Text PDF

It has become evident from decades of clinical trials that multimodal therapeutic approaches with focus on cell intrinsic and microenvironmental cues are needed to improve understanding and treat the rare, inoperable, and ultimately fatal diffuse intrinsic pontine glioma (DIPG), now categorized as a diffuse midline glioma. In this study we report the development and characterization of an in vitro system utilizing 3D Tumor Tissue Analogs (TTA), designed to replicate the intricate DIPG microenvironment. The innate ability of fluorescently labeled human brain endothelial cells, microglia, and patient-derived DIPG cell lines to self-assemble has been exploited to generate multicellular 3D TTAs that mimic tissue-like microstructures, enabling an in- depth exploration of the spatio-temporal dynamics between neoplastic and stromal cells.

View Article and Find Full Text PDF

Deciphering disease-specific glycosylation: unraveling diabetes subtypes through serum glycopattern.

Anal Bioanal Chem

September 2025

Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.

Latent autoimmune diabetes in adults (LADA) is a slowly progressing form of diabetes that develops in adulthood, characterized by autoimmune destruction of pancreatic β-cells and subsequent insulin deficiency, akin to type 1 diabetes (T1D). Due to its shared genetic, immunological, and metabolic features with both T1D and type 2 diabetes (T2D), LADA is frequently misdiagnosed and inappropriately treated as T2D. To address this, we developed the A.

View Article and Find Full Text PDF