98%
921
2 minutes
20
Site localization of protein sulfation by high-throughput proteomics remains challenging despite the technological improvements. In this study, sequence analysis and site localization of sulfation in tryptic peptides were determined under a conventional nano-liquid chromatography-mass spectrometry configuration. Tryptic sulfopeptide standards were used to study different fragmentation strategies, including collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), electron-transfer dissociation (ETD), electron-transfer/higher-energy collision dissociation (EThcD), and electron-transfer/collision-induced dissociation (ETciD), in the positive ionization mode. Sulfopeptides displayed only neutral loss of SO under CID, while the sequence could be determined for all other tested fragmentation techniques. Results were compared to the same sequences with phosphotyrosine, indicating important differences, as the sequence and modification localization could be studied by all fragmentation strategies. However, the use of metal adducts, especially potassium, provided valuable information for sulfopeptide localization in ETD and ETD-hybrid strategies by stabilizing the modification and increasing the charge state of sulfopeptides. In these conditions, both the sequence and localization could be obtained. In-source neutral loss of SO under EThcD provided diagnostic peaks suitable to distinguish the sulfopeptides from the nearly isobaric phosphopeptides. Further confirmation on the modification type was found in the negative ionization mode, where phosphopeptides always had the typical phosphate product ion corresponding to PO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260711 | PMC |
http://dx.doi.org/10.1021/acs.analchem.1c05621 | DOI Listing |
J Fluoresc
September 2025
Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India.
This study reports the synthesis, characterization, and multifunctional sensing capabilities of a novel quinoline-based Schiff base ligand (L), designed for selective and sensitive detection of Ni, Cu, Zn ions, and CO⁻ anions. L exhibits distinct colorimetric responses visible to the naked eye-pale yellow to amber red for Ni, caramel brown for Cu, and canary yellow for Zn-enabling efficient and straightforward detection. Fluorescence studies reveal a selective green fluorescence "turn-on" response for Zn, complemented by fluorescence quenching in the presence of CO⁻, demonstrating the ligand's reusability and robustness.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
Using an Earth-abundant transition metal to mediate formation and splitting of C-C σ-bonds, in response to electrical stimuli, constitutes a promising strategy to construct complex organic skeletons. Here, we showcase how [ BuN][N] reacts with an isocyanide adduct of a tetrahedral and high-spin Ti complex, [(Tp )TiCl] (1), to enact N-atom transfer, C-N bond formation, and C-C coupling, to form a dinuclear complex, [(Tp )Ti{AdN(N)C-C(N)NAd}Ti(Tp )] (3), with two Ti ions bridged by a disubstituted oxalimidamide ligand ( Bu = -butyl, Tp = hydrotris(3--butyl-5-methylpyrazol-1-yl)borate, Ad = 1-adamantyl). Magnetic and computational studies reveal two magnetically isolated d Ti ions, and electrochemical studies unravel a reversible two-electron oxidation at -0.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2025
Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.
Neutral lipids are vital to various cellular processes and disease pathologies. However, their characterization by matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) remains challenging due to poor ionization efficiency and difficulties distinguishing subtle structural differences among numerous isomeric and isobaric species. In this study, we enhanced neutral lipid detection by incorporating isotonic metal-cation washes into our MALDI IMS sample preparation workflow.
View Article and Find Full Text PDFPlast Surg (Oakv)
August 2025
Division of Plastic Surgery, Department of Surgery, University of Alberta, Edmonton, AB, Canada.
Surgical repair of orbital fractures comes with risks. One rare risk is interference with the actions of the superior oblique tendon-muscle complex causing an acquired Brown syndrome. We present the case of a 45-year-old man who developed acquired Brown syndrome after undergoing repair of a large orbital floor and medial orbital wall fracture using a titanium mesh implant.
View Article and Find Full Text PDFOrganometallics
August 2025
Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States.
Despite the widespread occurrence of CO poisoning and the number of people left underserved by current treatment options, there are no clinically employed CO poisoning antidotes. Current efforts to develop candidate antidotes have focused on Fe-(II) complexes with a high binding affinity for CO, with small-molecule Fe-(II) porphyrin complexes demonstrating promising potential in this role. The well-established organometallic chemistry of group 8 metals suggests that Ru-(II) and Os-(II) analogs should be able to form even more stable carbonyl adducts than their Fe-(II) congeners.
View Article and Find Full Text PDF