Publications by authors named "Carmela Maria Montone"

Seaweeds, comprising green (Chlorophyta), brown (Phaeophyta), and red (Rhodophyta) algae, are recognized as valuable marine resources rich in bioactive phenolic compounds with nutraceutical potential. Despite growing interest in edible species, limited attention has been given to infesting seaweeds, which may represent an underexploited source of bioactives while addressing ecological challenges. In the present study, an innovative, structure-based data processing workflow was set up for the characterization of phenolic compounds in marine organisms and applied to eight edible and two infesting seaweed species from the major taxonomic groups by means of untargeted mass spectrometric data acquisition.

View Article and Find Full Text PDF

The sustainable valorization of infesting marine biomass offers opportunities to address environmental challenges and emerging nutritional needs. This study investigated the invasive red alga as a potential source of bioactive peptides with antihypertensive and antidiabetic properties. Protein hydrolyzates were generated via enzymatic digestion and fractionated by size exclusion chromatography.

View Article and Find Full Text PDF

Polyphenols are a large group of plant secondary metabolites, synthesized mostly through the phenylpropanoid pathway, and they comprise flavonoids, stilbenes, lignans, and simple phenolic acids. The characterization of these natural compounds is challenging, due to the complexity of plant extracts, the variety of polyphenols forms in the various plant organs, and the limited availability of authentic standards. The analysis of polyphenols is mostly achieved by reversed-phase liquid chromatography (LC), but poor retention and resolution are often observed for the polar ones.

View Article and Find Full Text PDF

The National Cancer Institute (NCI) recognizes the potential of technologies based on the use of nanoparticles (NPs) in revolutionizing clinical approaches to the diagnosis and prognosis of cancer. Recent research suggests that once NPs come into contact with the biological fluid of cancer patients, they are covered by proteins, forming a "protein corona" composed of hundreds of plasma proteins. The concept of a personalized, disease-specific protein corona, demonstrating substantial differences in NP corona profiles between patients with and without cancer, has been introduced.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) play a crucial role in addressing genetic disorders, and cancer, and combating pandemics such as COVID-19 and its variants. Yet, the ability of LNPs to effectively encapsulate large-size DNA molecules remains elusive. This is a significant limitation, as the successful delivery of large-size DNA holds immense potential for gene therapy.

View Article and Find Full Text PDF
Article Synopsis
  • Multi-residue methods for pesticide analysis often exclude polar compounds like glyphosate, requiring complex techniques for their detection in food samples, such as specialized chromatography.
  • A new method was developed for analyzing polar pesticides in beer, utilizing an online trapping device that combines reversed-phase and ion exchange properties, enabling effective extraction and separation.
  • Validation of this method demonstrated recoveries of 71-112% and detection limits competitive with existing polar pesticide analysis methods, confirming its efficacy for large-scale beer testing.
View Article and Find Full Text PDF
Article Synopsis
  • Seaweeds, which are large algae, are becoming popular for their health benefits, potential as drug sources, and role in combating climate change, especially due to their high content of beneficial fatty acids.
  • The study focused on analyzing the structure and geometry of fatty acids in seaweeds using advanced mass spectrometry techniques, leading to a detailed understanding of their lipid composition.
  • Researchers identified over 900 lipid species from 8 different seaweed species and uncovered unique features about their double bonds, enhancing the understanding of seaweed's nutritional value.
View Article and Find Full Text PDF

Nowadays, the growing knowledge about the high nutritional value and potential functionality of hempseeds, the edible fruits of the Cannabis sativa L. plant, has sparked a surge in interest in exploring the worthwhile attributes of hempseed proteins and peptides. This trend aligns with the increasing popularity of hemp-based food, assuming a vital role in the global food chain.

View Article and Find Full Text PDF
Article Synopsis
  • Lipidomics using high-resolution mass spectrometry (HRMS) is important in clinical chemistry for linking lipid imbalances to various diseases, but identifying specific structures beyond fatty acids remains challenging, particularly concerning the arrangement of carbon-carbon double bonds.* -
  • Researchers have proposed methods to analyze these double bonds, including a new approach that utilizes the inverse-electron-demand Diels-Alder (IEDDA) reaction with tetrazines, which provides fast results and effective characterization.* -
  • This study successfully applied a catalyst-free IEDDA reaction to identify double bonds in fatty acids and lipid regioisomers, allowing for detailed analysis and quantification in complex samples, like plasma from prostate cancer patients.*
View Article and Find Full Text PDF

Background: Metabolomics is nowadays considered one the most powerful analytical for the discovery of metabolic dysregulations associated with the insurgence of cancer, given the reprogramming of the cell metabolism to meet the bioenergetic and biosynthetic demands of the malignant cell. Notwithstanding, several challenges still exist regarding quality control, method standardization, data processing, and compound identification. Therefore, there is a need for effective and straightforward approaches for the untargeted analysis of structurally related classes of compounds, such as acylcarnitines, that have been widely investigated in prostate cancer research for their role in energy metabolism and transport and β-oxidation of fatty acids.

View Article and Find Full Text PDF

Multicomponent reactions offer efficient and environmentally friendly strategies for preparing monoliths suitable for applications in analytical chemistry. In the described study, a multicomponent reaction was utilized for the one-pot miniaturized preparation of a poly(propargyl amine) polymer inside commercial silica-lined PEEK tubing. The reaction involved only small amounts of reagents and was characterized by atom economy.

View Article and Find Full Text PDF

Due to their valuable nutritional content, several hemp-derived products from hempseeds have recently been placed in the market as food and food ingredients. In particular, the lipid composition of hempseeds has raised interest for their rich content in biologically active polyunsaturated fatty acids with an optimum ratio of omega-3 and omega-6 compounds. At present, however, the overall polar lipidome composition of hempseeds remains largely unknown.

View Article and Find Full Text PDF

Short-chain peptides have attracted increasing attention in different research fields, including biomarker discovery, but also a well-known analytical challenge in complex matrices due to their low abundance compared to other molecules, which can cause extensive ion suppression during mass spectrometric acquisition. Moreover, there is a lack of analytical workflows for their comprehensive characterization since ordinary peptidomics strategies cannot identify them. In this context, an enrichment strategy was introduced and developed to isolate and clean up short-chain peptides by graphitized carbon black solid phase extraction.

View Article and Find Full Text PDF

A molecularly imprinted polymer with a specific selectivity for patulin was successfully synthesized. The molecularly imprinted material was prepared using the two functional monomers dopamine and melamine and formaldehyde as the cross-linker. The resulting material possessed a large number of hydrophilic groups, such as hydroxyls, imino groups, and ether linkages.

View Article and Find Full Text PDF

In recent years, the presence of antibiotics in the aquatic environment has caused increasing concern for the possible consequences on human health and ecosystems, including the development of antibiotic-resistant bacteria. However, once antibiotics enter the environment, mainly through hospital and municipal discharges and the effluents of wastewater treatment plants, they can be subject to transformation reactions, driven by both biotic (e.g.

View Article and Find Full Text PDF

Cannabis sativa has long been harvested for industrial applications related to its fibers. Industrial hemp cultivars, a botanical class of Cannabis sativa with a low expression of intoxicating Δ-tetrahydrocannabinol (Δ-THC) have been selected for these purposes and scarcely investigated in terms of their content in bioactive compounds. Following the global relaxation in the market of industrial hemp-derived products, research in industrial hemp for pharmaceutical and nutraceutical purposes has surged.

View Article and Find Full Text PDF

Wastewater treatment plants are known to be relevant input sources of per- and polyfluoroalkyl substances (PFAS) in the aquatic environment. This study aimed to investigate the occurrence, fate, and seasonal variability of twenty-five PFAS in four municipal wastewater treatment plants (WWTP A, B, C, and D) surrounding the city of Milan (Northern, Italy). Composite 24-h wastewater samples were collected in July and October 2021 and May and February 2022 from influents and effluents of the four WWTPs.

View Article and Find Full Text PDF

Mitragyna speciosa or kratom is emerging worldwide as a "legal" herbal drug of abuse. An increasing number of papers is appearing in the scientific literature regarding its pharmacological profile and the analysis of its chemical constituents, mainly represented by alkaloids. However, its detection and identification are not straightforward as the plant material is not particularly distinctive.

View Article and Find Full Text PDF
Article Synopsis
  • - The article reviews current advancements in analyzing intact glycopeptides using LC-MS proteomics, highlighting recent techniques at various stages of the analytical process.
  • - It emphasizes the importance of specialized sample preparation and introduces new materials and chemical strategies designed for glycopeptide analysis and dual enrichment of glycosylation along with other modifications.
  • - Finally, it outlines ongoing challenges in the field, such as understanding glycopeptide isomerism, improving quantitative analysis, and developing methods for large-scale characterization of underexplored glycosylation types.
View Article and Find Full Text PDF

The presence of pharmaceuticals in the aquatic environment is mainly due to their release from the effluents of the wastewater treatment plants (WWTPs), which are unable to completely remove them and their transformation products (TPs). Sulfonamides (SAs) are a synthetic antibacterial class used for the treatment of both human and animal infections; they have often been reported in surface water, thus contributing to the antibiotic resistance emergency. Monitoring SA TPs should be important as well because they could still exert some pharmaceutical activity; however, many TPs are still unknown since several transformation processes are possible (e.

View Article and Find Full Text PDF

Industrial hemp (Cannabis sativa L.) is a plant matrix whose use is recently spreading for pharmaceutical and nutraceutical purposes. Detailed characterization of hemp composition is needed for future research that further exploits the beneficial effects of hemp compounds on human health.

View Article and Find Full Text PDF

The paper describes the preparation and characterization of a new HILIC material for the enrichment of N-linked glycopeptides. The material was prepared using 2-acrylamido-2-methyl-1-propanesulfonic acid as the monomer and ethylene glycol dimethacrylate as the cross-linker. The material was developed by a Box-Behnken experimental design, taking into consideration the amount of monomer-to-crosslinker ratio, the composition, and the amount of porogen mixture.

View Article and Find Full Text PDF

This study aims to obtain a valuable mixture of short-chain peptides from hempseed as a new ingredient for developing nutraceutical and functional foods useful for preventing metabolic syndrome that represents the major cause of death globally. A dedicated analytical platform based on a purification step by size exclusion chromatography or ultrafiltration membrane and high-resolution mass spectrometry was developed to isolate and comprehensively characterize short-chain peptides leading to the identification of more than 500 short-chain peptides. Our results indicated that the short-chain peptide mixture was about three times more active than the medium-chain peptide mixture and total hydrolysate with respect to measured inhibition of the angiotensin-converting enzyme.

View Article and Find Full Text PDF

In recent years, there is increasing attention on the contaminants of emerging concern (CECs), which include plasticizers, flame retardants, industrial chemicals, pharmaceuticals, and personal care products, since they have been detected even far away from pollution sources. The polar regions are not exempt from the presence of anthropogenic contaminants, and they are employed as a model for understanding the pollutant fate and impact. During the 2021 spring campaign, sixteen surface snow samples were collected close to the research station of Ny-Ålesund located on the Spitsbergen Island of the Norwegian Svalbard Archipelago.

View Article and Find Full Text PDF

The evaluation of double bond positions in fatty acyl chains has always been of great concern given their significance in the chemical and biochemical role of lipids. Despite being the foremost technique for lipidomics, it is difficult in practice to obtain identification beyond the fatty acyl level by the sole high-resolution mass spectrometry. Paternò-Büchi reactions of fatty acids (FAs) with ketones have been successfully proposed for pinpointing double bonds in FAs in combination with the collision-induced fragmentation technique.

View Article and Find Full Text PDF