A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Validation of a global method for the simultaneous analysis of polar and non-polar pesticides by online extraction and LC-MS/MS. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Multi-residue methods for pesticide analysis in food are available for many compounds, but polar pesticides are not generally included due to their specific properties, which include high polarity and low molecular weight. Single residue methods are therefore needed for sample preparation, while chromatographic separation often requires derivatization, ion paring, or dedicated methods suitable for polar compounds, mostly ion chromatography and hydrophilic interaction liquid chromatography (HILIC). These challenges affect the important pesticide glyphosate and the related compounds aminomethylphosphonic acid (AMPA) and glufosinate. There are only a few methods including these compounds in large-scale analysis, mostly complex methods based on multidimensional chromatography.

Results: A new method, for the global online extraction and analysis of pesticides in beer was developed and validated. The method exploited an online trapping device, with reversed-phase (RP) and anion exchange properties, that can trap small molecules from liquid samples. The ion exchange mechanism was used to retain the very polar pesticides glyphosate, AMPA, and glufosinate. The hydrophobic properties of the trapping column were also exploited to trap pesticides suitable for multi-residue investigations. The chromatographic separation was optimized by comparison of HILIC and RP C30, which could separate pesticides, including the polar ones, with modulation by the trapping column after proper selection of the mobile phase composition and basic modifier. The validation for beer provided recoveries in the range 71-112 %, with <15 % RSD, and LOD and LOQ values of 0.02-1 and 0.3-3 μg L, respectively. The result was competitive with previous methods on polar pesticide analysis in beer.

Significance: The method was validated for 15 pesticides, over the log K range from -4.4 to 4.5, using a methodology with single and fast chromatographic separation under conditions compatible with multi-residue analysis by RP-LC-MS/MS. In the case of beer, for which the method was validated, the sample preparation was also performed online, after simple degassing, and sample dilution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.343231DOI Listing

Publication Analysis

Top Keywords

online extraction
8
polar pesticides
8
chromatographic separation
8
ampa glufosinate
8
trapping column
8
pesticides
6
polar
5
methods
5
validation global
4
global method
4

Similar Publications