Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid transport of alkali ions in electrodes is a long-time dream for fast-charging batteries. Though electrode nanostructuring has increased the rate-capability, its practical use is limited because of the low tap density and severe irreversible reactions. Therefore, development of a strategy to design fast-charging micron-sized electrodes without nanostructuring is of significant importance. Herein, a simple and versatile strategy to accelerate the alkali ion diffusion behavior in micron-sized electrode is reported. It is demonstrated that the diffusion rate of K ions is significantly improved at the hetero-interface between orthorhombic Nb O (001) and monoclinic MoO (110) planes. Lattice distortion at the hetero-interface generates an inner space large enough for the facile transport of K ions, and electron localization near oxygen-vacant sites further enhances the ion diffusion behavior. As a result, the interfacial-engineered micron-sized anode material achieves an outstanding rate capability in potassium-ion batteries (KIBs), even higher than nanostructured orthorhombic Nb O  which is famous for fast-charging electrodes. This is the first study to develop an intercalation pseudocapacitive micron-sized anode without nanostructuring for fast-charging and high volumetric energy density KIBs. More interestingly, this strategy is not limited to K ion, but also applicable to Li ion, implying the versatility of interfacial engineering for alkali ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202202798DOI Listing

Publication Analysis

Top Keywords

versatile strategy
8
fast-charging batteries
8
interfacial engineering
8
alkali ion
8
ion diffusion
8
diffusion behavior
8
micron-sized anode
8
fast-charging
5
ion
5
strategy achieving
4

Similar Publications

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

Focus on 2004 to 2024The rediscovery of natural products (NPs) as a critical source of new therapeutics has been greatly advanced by the development of heterologous expression platforms for biosynthetic gene clusters (BGCs). Among these, species have emerged as the most widely used and versatile chassis for expressing complex BGCs from diverse microbial origins. In this review, we provide a comprehensive analysis of over 450 peer-reviewed studies published between 2004 and 2024 that describe the heterologous expression of BGCs in hosts.

View Article and Find Full Text PDF

Comparative analysis of colonization and survival strategies of regionally predominant LA-MRSA clones ST398 and ST9.

mSystems

September 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.

Livestock-associated methicillin-resistant (LA-MRSA) displays distinct geographical distribution patterns, with ST398 predominating in Europe and ST9 being the dominant lineage in Asia, particularly China. However, the mechanisms underlying these differences remain poorly understood. In this study, we evaluated the cell adhesion capacity, anti-phagocytic properties, and porcine nasal colonization potential of ST9 and ST398 strains isolated from China and Germany.

View Article and Find Full Text PDF

Fluorescent N-heterocyclic carbene (NHC) metal complexes are useful for various chemical and biological applications. In this study, we developed a simple strategy to synthesize BODIPY-linked NHC metal complexes involving Ag, Cu, Ni, and Pd. The synthesis began with the preparation of BODIPY-imidazolium salt as a precursor ligand.

View Article and Find Full Text PDF