98%
921
2 minutes
20
The universal utilization of fluorescence microscopy, especially super-resolution microscopy, has greatly advanced knowledge about modern biology. Conversely, the requirement of fluorophore labeling in fluorescent techniques poses significant challenges, such as photobleaching and non-uniform labeling of fluorescent probes and prolonged sample processing. In this protocol, the detailed working procedures of vibrational imaging of swelled tissue and analysis (VISTA) are presented. VISTA circumvents obstacles associated with fluorophores and achieves label-free super-resolution volumetric imaging in biological samples with spatial resolution down to 78 nm. The procedure is established by embedding cells and tissues in hydrogel, isotropically expanding the hydrogel sample hybrid, and visualizing endogenous protein distributions by vibrational imaging with stimulated Raman scattering microscopy. The method is demonstrated on both cells and mouse brain tissues. Highly correlative VISTA and immunofluorescence images were observed, validating the protein origin of imaging specificities. Exploiting such correlation, a machine learning-based image-segmentation algorithm was trained to achieve multi-component prediction of nuclei, blood vessels, neuronal cells, and dendrites from label-free mouse brain images. The procedure was further adapted to investigate pathological poly-glutamine (polyQ) aggregates in cells and amyloid-beta (Aβ) plaques in brain tissues with high throughput, justifying its potential for large-scale clinical samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9549918 | PMC |
http://dx.doi.org/10.3791/63824 | DOI Listing |
Nanomicro Lett
September 2025
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.
View Article and Find Full Text PDFMagn Reson Chem
September 2025
Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Infrared (IR) spectroscopic imaging combines the molecular specificity of vibrational spectroscopy with imaging capabilities of microscopy, potentially allowing for simultaneous quantitative observations of drugs and cellular response. However, accurately quantifying drug concentration within changing cells is complicated by the overlap between exogenous molecules' and native cellular spectra. Here, we address this challenge by developing a derivative of the widely used chemotherapeutic doxorubicin as a spectral bioprobe (DOX-IR) using a strongly absorbing metal-carbonyl moiety [(Cp)Fe(CO)].
View Article and Find Full Text PDFChemistry
September 2025
International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
Alzheimer's disease (AD) is a neurodegenerative disease characterized by β-amyloid (Aβ) deposition, imposing significant social and economic burdens globally. Despite extensive efforts have been devoted to developing fluorescent probes for Aβ imaging, further improving the luminescent efficiency of prevailing probes still remains a significant challenge. Herein, we investigated the inner mechanism of constructing high-efficient Aβ probes via a structural cyclization strategy.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093, United States.
Chemical imaging holds great promise for chemical, materials, and biological applications. However, its contrast often relies on subtle spectral differences arising from molecular-level changes. Here, we introduce label-free chemical imaging based on bond-specific coherent interference, which is highly sensitive to nanoscopic structural variations in collagen fibers.
View Article and Find Full Text PDF