Publications by authors named "Chun-Chieh Yu"

Tip-enhanced vibrational sum frequency generation (VSFG) spectroscopy is proposed and demonstrated. Incorporation with the plasmon cavities leads to significant signal amplification-up to 14 orders of magnitude.

View Article and Find Full Text PDF

Nanoconfinement of aqueous electrolytes is ubiquitous in geological, biological, and technological contexts, including sedimentary rocks, water channel proteins, and applications like desalination and water purification membranes. The structure and properties of water in nanoconfinement can differ significantly from bulk water, exhibiting, for instance, modified hydrogen bonds, altered dielectric constant, and distinct phase transitions. Despite the importance of nanoconfined water, experimentally elucidating the nanoconfinement effects on water, such as its orientation and hydrogen bond (H-bond) network, has remained challenging.

View Article and Find Full Text PDF

Salt-in-water and water-in-salt mixtures are promising for battery applications and fine-tuning of room-temperature ionic liquid (RTIL) properties. Although critical processes take place at interfaces of these systems, including charge transfer and heterogeneous catalytic reactions, the microscopic interfacial structures remain unclear. Here, we apply heterodyne-detected sum-frequency generation spectroscopy to aqueous solutions of imidazolium-based RTILs to unveil the microscopic structure of the interfaces of these solutions with air.

View Article and Find Full Text PDF

TIAM Rac1-associated GEF 2 short-form protein (TIAM2S) is abundant in specific brain tissues, especially in the hippocampus, a brain region critical for processing and consolidation of spatial memory. However, how TIAM2S plasticizes the microstructure and circuits of the hippocampus to shape spatial memory as a neuroplastic regulator during aging remains to be determined. In this study, transgenic mice overexpressing human TIAM2S protein (TIAM2S-TG mice) were included, and interdisciplinary approaches, such as spatial memory tests and multiparametric magnetic resonance imaging sequences, were conducted to determine the role and the mechanism of TIAM2S in age-related spatial memory deficits.

View Article and Find Full Text PDF
Article Synopsis
  • * The study uses heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy to examine unsaturated lipid monolayers on water, focusing on how the position of C=C impacts lipid organization.
  • * Findings reveal that in high-density lipid conditions, the position of the C=C group doesn’t change water interface organization or alkyl chain structure, with the first third of carbon atoms being rigid and the rest behaving more freely, leading to chain disorder.
View Article and Find Full Text PDF

Ions containing iodine atoms at the vapor-aqueous solution interfaces critically affect aerosol growth and atmospheric chemistry due to their complex chemical nature and multivalency. While the surface propensity of iodide ions has been intensely discussed in the context of the Hofmeister series, the stability of various ions containing iodine atoms at the vapor-water interface has been debated. Here, we combine surface-specific sum-frequency generation (SFG) vibrational spectroscopy with molecular dynamics simulations to examine the extent to which iodide ions cover the aqueous surface.

View Article and Find Full Text PDF

Vibrational coupling between interfacial water molecules is important for energy dissipation after on-water chemistry, yet intensely debated. Here, we quantify the interfacial vibrational coupling strength through the linewidth of surface-specific vibrational spectra of the water's O─H (O─D) stretch region for neat H_{2}O/D_{2}O and their isotopic mixtures. The local-field-effect-corrected experimental SFG spectra reveal that the vibrational coupling between hydrogen-bonded interfacial water O─H groups is comparable to that in bulk water, despite the effective density reduction at the interface.

View Article and Find Full Text PDF

Organic molecules with aromatic groups at the aqueous interfaces play a central role in atmospheric chemistry, green chemistry, and on-water synthesis. Insights into the organization of interfacial organic molecules can be obtained using surface-specific vibrational sum-frequency generation (SFG) spectroscopy. However, the origin of the aromatic C-H stretching mode peak is unknown, prohibiting us from connecting the SFG signal to the interfacial molecular structure.

View Article and Find Full Text PDF

Biomolecular condensates, protein-rich and dynamic membrane-less organelles, play critical roles in a range of subcellular processes, including membrane trafficking and transcriptional regulation. However, aberrant phase transitions of intrinsically disordered proteins in biomolecular condensates can lead to the formation of irreversible fibrils and aggregates that are linked to neurodegenerative diseases. Despite the implications, the interactions underlying such transitions remain obscure.

View Article and Find Full Text PDF

Accurate determination of protein structure at interfaces is critical for understanding protein interactions, which is directly relevant to a molecular-level understanding of interfacial proteins in biology and medicine. Vibrational sum frequency generation (VSFG) spectroscopy is often used for probing the protein amide I mode, which reports protein structures at interfaces. Observed peak shifts are attributed to conformational changes and often form the foundation of hypotheses explaining protein working mechanisms.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are extensively used in food-contact paper and cardboard. However, they may migrate from food-contact materials to food, and the migration rate may be increased at elevated temperatures. In addition, there is a positive association of PFOS/PFOA levels with total cholesterol.

View Article and Find Full Text PDF

In typical aqueous systems, including naturally occurring sweet and salt water and tap water, multiple ion species are co-solvated. At the water-air interface, these ions are known to affect the chemical reactivity, aerosol formation, climate, and water odor. Yet, the composition of ions at the water interface has remained enigmatic.

View Article and Find Full Text PDF

Biosafety is a critical issue for the successful translocation of nanomaterial-based therapeutic/diagnostic agents from bench to bedside. For instance, after the withdrawal of clinically approved magnetic resonance (MR) imaging contrast agents (CAs) due to their biosafety issues, there is a massive demand for alternative, efficient, and biocompatible MR contrast agents for future MRI clinical applications. To this end, here we successfully demonstrate the MR contrast abilities and biocompatibilities of ligand-free FeSn alloy NPs for tracking lung tumors.

View Article and Find Full Text PDF

Insights into the microscopic structure of aqueous interfaces are essential for understanding the chemical and physical processes on the water surface, including chemical synthesis, atmospheric chemistry, and events in biomolecular systems. These aqueous interfaces have been probed by heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy. To obtain the molecular response from the measured HD-SFG spectra, one needs to correct the measured ssp spectra for local electromagnetic field effects at the interface due to a spatially varying dielectric function.

View Article and Find Full Text PDF

Molecular-level insight into interfacial water at a buried electrode interface is essential in electrochemistry, but spectroscopic probing of the interface remains challenging. Here, using surface-specific heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy, we directly access the interfacial water in contact with the graphene electrode supported on calcium fluoride (CaF ). We find phase transition-like variations of the HD-SFG spectra vs.

View Article and Find Full Text PDF

The dielectric properties of interfacial water on subnanometer length scales govern chemical reactions, carrier transfer, and ion transport at interfaces. Yet, the nature of the interfacial dielectric function has remained under debate as it is challenging to access the interfacial dielectric with subnanometer resolution. Here we use the vibrational response of interfacial water molecules probed using surface-specific sum-frequency generation (SFG) spectra to obtain exquisite depth resolution.

View Article and Find Full Text PDF

Sum-frequency generation (SFG) spectroscopy provides a unique optical probe for interfacial molecules with interface-specificity and molecular specificity. SFG measurements can be further carried out at different polarization combinations, but the target of the polarization-dependent SFG is conventionally limited to investigating the molecular orientation. Here, we explore the possibility of polarization-dependent SFG (PD-SFG) measurements with heterodyne detection (HD-PD-SFG).

View Article and Find Full Text PDF

The three-dimensional spatial distribution of molecules at soft matter interfaces is crucial for processes ranging from membrane biophysics to atmospheric chemistry. While several techniques can access surface composition, obtaining information on the depth distribution is challenging. We develop a noninvasive, polarization-resolved, surface-specific sum-frequency generation spectroscopy providing quantitative depth information.

View Article and Find Full Text PDF

Neurogenic inflammation and central sensitization play a role in chronic prostatitis/chronic pelvic pain syndrome. We explore the molecular effects of low-intensity shock wave therapy (Li-ESWT) on central sensitization in a capsaicin-induced prostatitis rat model. Male Sprague-Dawley rats underwent intraprostatic capsaicin (10 mM, 0.

View Article and Find Full Text PDF

Background: Late diagnosis of lung cancer is one of the leading causes of higher mortality in lung cancer patients worldwide. Significant research attention has focused on the use of magnetic resonance imaging (MRI) based nano contrast agents to efficiently locate cancer tumors for surgical removal or disease diagnostics. Although contrast agents offer significant advantages, further clinical applications require improvements in biocompatibility, biosafety and efficacy.

View Article and Find Full Text PDF

Many essential processes occur at soft interfaces, from chemical reactions on aqueous aerosols in the atmosphere to biochemical recognition and binding at the surface of cell membranes. The spatial arrangement of molecules specifically at these interfaces is crucial for many of such processes. The accurate determination of the interfacial molecular orientation has been challenging due to the low number of molecules at interfaces and the ambiguity of their orientational distribution.

View Article and Find Full Text PDF

Ineffective site-specific delivery has seriously impeded the efficacy of nanoparticle-based drugs to a disease site. Here, we report the preparation of three different shapes (sphere, scroll, and oblate) to systematically evaluate the impact of the marginative delivery on the efficacy of magnetic resonance (MR) imaging-guided X-ray irradiation at a low dose of 1 Gy. In addition to the shape effect, the therapeutic efficacy is investigated for the first time to be strongly related to the structure effect that is associated with the chemical activity.

View Article and Find Full Text PDF

The evaporation of molecules from water-organic solute binary mixtures is key for both atmospheric and industrial processes such as aerosol formation and distillation. Deviations from ideal evaporation energetics can be assigned to intermolecular interactions in solution, yet evaporation occurs from the interface, and the poorly understood interfacial, rather than the bulk, structure of binary mixtures affects evaporation kinetics. Here we determine the interfacial structure of nonideal binary mixtures of water with methanol, ethanol, and formic acid, by combining surface-specific vibrational spectroscopy with molecular dynamics simulations.

View Article and Find Full Text PDF

The origin of the sum-frequency generation (SFG) signal of the water bending mode has been controversially debated in the past decade. Unveiling the origin of the signal is essential, because different assignments lead to different views on the molecular structure of interfacial water. Here, we combine collinear heterodyne-detected SFG spectroscopy at the water-charged lipid interfaces with systematic variation of the salt concentration.

View Article and Find Full Text PDF