Tunable lattice thermal conductivity of twisted bilayer MoS.

Phys Chem Chem Phys

Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We have studied the thermal conductivity () of layered MoS, a typical member of the transition metal dichalcogenide (TMDC) materials, using fully atomistic molecular dynamics simulations and Boltzmann transport equation (BTE) based first principles methods. We investigate the tuning of the thermal conductivity with the twist angle between two layers and found a decreasing trend of with the increase in the lattice constant of the moiré superlattice. The thermal conductivity at twist angle = 21.78° is found to be 72.03 W m K and for an angle of 2.87°, it reaches 54.48 W m K, leading to a 32% reduction in the thermal conductivity. We use first principles calculations based on the BTE for phonons to give a microscopic origin of the decrease in thermal conductivity through anharmonic phonon scattering events and also reaffirm the MD simulation results for the monolayer and bilayer.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp01304eDOI Listing

Publication Analysis

Top Keywords

thermal conductivity
24
conductivity twist
8
twist angle
8
thermal
6
conductivity
6
tunable lattice
4
lattice thermal
4
conductivity twisted
4
twisted bilayer
4
bilayer mos
4

Similar Publications

High-entropy metal phosphide nanoparticles for accelerated lithium polysulfide conversion.

Chem Sci

September 2025

School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning 530004 P. R. China

To overcome the persistent challenges of sluggish lithium polysulfide (LiPS) conversion kinetics and the shuttle effect in Li-S batteries, this work introduces a novel, cost-effective thermal treatment strategy for synthesizing high-entropy metal phosphide catalysts using cation-bonded phosphate resins. For the first time, we successfully fabricated single-phase high-entropy FeCoNiCuMnP nanoparticles anchored on a porous carbon network (HEP/C). HEP/C demonstrates enhanced electronic conductivity and superior LiPS adsorption capability, substantially accelerating its redox kinetics.

View Article and Find Full Text PDF

Background: In catheter-based radiofrequency ablation (RFA), energy is delivered to heterogeneous thin-walled tissues to induce therapeutic heating. Variations in electrical and mechanical properties of tissue contents have a great effect on outcomes.

Purpose: The objective of this study is to develop models that replicate tissue heterogeneity and visualize ablation zones for effective evaluation and optimization.

View Article and Find Full Text PDF

Thickness-Dependent Low Lattice Thermal Conductivity of Chemical Vapor-Deposited SnSe Nanosheets.

ACS Nano

September 2025

State Key Lab of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

SnSe is a layered semiconductor with intrinsically low thermal conductivity, making it a promising candidate for thermoelectric and thermal management applications. However, detailed measurements of the intrinsic thermal conductivity of SnSe nanosheets grown by chemical vapor deposition (CVD) remain scarce. Here, monocrystalline SnSe nanosheets were synthesized by CVD, with systematic investigation of thickness-dependent in-plane thermal conductivity.

View Article and Find Full Text PDF

Li/CF primary batteries are renowned for their exceptional energy density, yet their practical deployment is hindered by the inherently sluggish kinetics of the CF cathode. This study addresses this limitation by incorporating selenium (Se) into CF (denoted as CF/Se) via a facile low-temperature thermal treatment, significantly enhancing its electrochemical performance. Comprehensive spectroscopic and electrochemical analyses reveal that Se doping induces the formation of CSe bonds, which promote semi-ionic CF bonding, thereby accelerating Li diffusion and reducing charge transfer resistance.

View Article and Find Full Text PDF

The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.

View Article and Find Full Text PDF