Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Patients with spinal cord injury (SCI) frequently develop infections that may affect quality of life, be life-threatening, and impair their neurological recovery in the acute and subacute injury phases. Therefore, identifying patients with SCI at risk for developing infections in this stage is of utmost importance. We determined the systemic levels of immune cell populations, cytokines, chemokines, and growth factors in 81 patients with traumatic SCI at 4 weeks after injury and compared them with those of 26 age-matched healthy control subjects. Patients who developed infections between 4 and 16 weeks after injury exhibited higher numbers of neutrophils and eosinophils, as well as lower numbers of lymphocytes and eotaxin-1 (CCL11) levels. Accordingly, lasso logistic regression showed that incomplete lesions (American Spinal Injury Association Impairment Scale [AIS] C and D grades), the levels of eotaxin-1, and the number of lymphocytes, basophils, and monocytes are predictive of lower odds for infections. On the other hand, the number of neutrophils and eosinophils as well as, in a lesser extent, the levels of IP-10 (CXCL10), MCP-1 (CCL2), BDNF [brain-derived neurotrophic factor], and vascular endothelial growth factor [VEGF]-A, are predictors of increased susceptibility for developing infections. Overall, our results point to systemic immune disbalance after SCI as predictors of infection in a period when infections may greatly interfere with neurological and functional recovery and suggest new pathways and players to further explore novel therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2021.0448DOI Listing

Publication Analysis

Top Keywords

systemic immune
8
patients spinal
8
spinal cord
8
developing infections
8
weeks injury
8
neutrophils eosinophils
8
eosinophils well
8
infections
7
patients
5
injury
5

Similar Publications

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF

An Activatable and Covalent Tumor-Associated Antigen Capturer Enabling Systemic Injection for Promoted Antitumor Immunity.

J Am Chem Soc

September 2025

Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Academy for Advanced Interdisciplinary Studies, Nankai University, Tianjin 300071, PR China.

Antigen-capturing nanomaterials hold great promise for cancer immunotherapy; however, the need for tumor localized administration and limited antigen-binding affinity remains the "Achilles heel" of this strategy. Herein, we present a tumor microenvironment (TME)-activatable nanoplatform, TDR848@FPB, designed for systemic administration and enhanced covalent capture of tumor-associated antigens (TAAs), enabling effective immunotherapy with minimal off-target effects and independent of localized tumor administration. This platform encapsulates a photosensitizer-conjugated, light-activated toll-like receptor (TLR) agonist, which induces immunogenic cell death and triggers a pro-inflammatory TME conducive to antigen capture upon light irradiation.

View Article and Find Full Text PDF

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF

Purpose: To characterize corneal immune cell morphodynamics and nerve features, and define the in vivo immune landscape in older adults with human immunodeficiency virus (HIV) receiving antiretroviral therapy (ART), relative to healthy age-matched adults.

Methods: In this cross-sectional study, 16 HIV-positive individuals receiving ART and 15 age-matched controls underwent ocular surface examinations and functional in vivo confocal microscopy (Fun-IVCM). Time-lapsed videos were created to analyze corneal immune cells (T cells, dendritic cells [DCs], macrophages).

View Article and Find Full Text PDF