Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The prodrug mycophenolate mofetil (MMF), which is presystemically hydrolyzed into the pharmacologically active compound mycophenolic acid (MPA), has been widely used for the prophylaxis of acute allograft rejection in solid organ transplantation. However, the huge variability in the plasma concentration level makes the development of MMF drug products difficult due to the great challenge of meeting the traditional bioequivalence (BE) limits. Numerous models have been developed in the past decade to explain the variability, with the emphasis on characterizing the enterohepatic circulation. While the variability arising from systemic appearance can also contribute to the remarkable MPA variability to a great extent, it has been ignored for long for this Biopharmaceutics Classification System class 2 drug. To improve the design of the BE study for this highly variable (HV) drug, the variability of MMF pharmacokinetic (PK) profiles focusing on the absorption process was explored in a population approach. A total of 81 Chinese adult liver transplant recipients were enrolled and had their plasma concentrations of MPA and its metabolites measured by HPLC during one visit or multiple visits in a long-term MMF regimen. The population models were developed using NONMEM, and the data and the results of the model were analyzed by R. Two population PK models of MMF focusing on the absorption process were developed based on the plasma concentrations of MPA and its major metabolite 7-O-MPA-β-glucuronide (MPAG). The MPA PK profiles were best characterized by a two-compartment disposition model with zero inter-individual variability (IIV) of elimination coefficient (K20), lag time, but considerable intra-individual variability (IAV) in the form of inter-occasion variability regarding systemic appearance coefficient, K20, and central volume of distribution, when just using MPA plasma concentrations as observations. The second model took into consideration the EHC by including MPAG profiles as well. The results from both models showcased that the IAV played a far more significant role than the IIV in accounting for the variability of the MMF systemic appearance. This is in line with what was found in the BE study: the within-subject variability (WSV) of BE measures largely exceeded the corresponding between-subject variability. The great WSV of MMF can be mechanistically explained by the interplay of dissolution and solubility with the gastrointestinal (GI) physiological dynamics, especially the gastric emptying (GE) in the fasting state regulated by migrating motor complex, and GE and pH variations in the fed state by the caloric content with irregular patterns of GI motility and secretion. The results implied that for the immediate-release solid oral dosage forms of MMF, running a regular dissolution test for the fasting state and developing a predictive dissolution test with sufficient simulation of the GE dynamics and proximal small intestinal pH fluctuations for the fed state would be excellent surrogates for the BE test. Furthermore, a physiologically based predictive dissolution test under both fasting and fed conditions would be a new trend for the BE studies of all other HV drug products.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.1c00792DOI Listing

Publication Analysis

Top Keywords

dissolution test
16
predictive dissolution
12
systemic appearance
12
plasma concentrations
12
variability
11
immediate-release solid
8
solid oral
8
oral dosage
8
dosage forms
8
highly variable
8

Similar Publications

This study aimed to characterize, in vitro dissolution, and evaluate the release kinetics of salicylamide in capsule shells made from κ-carrageenan-HPMC. The capsule shell was prepared using the dipping method with CRG: HPMC (1:1, 1:2, 1:3) ratio, supplemented with sorbitol and antifoam silicone emulsion. Characterization was conducted using FTIR, SEM-EDX mapping, AFM, hardness, and swelling degree experiments.

View Article and Find Full Text PDF

This study focuses on mineral groundwater in alpine regions and its sustainable exploitation. The Tongde basin on Tibetan Plateau was investigated to reveal the hydrochemistry and formation of mineral groundwater in alpine basins and its sustainable development under anthropogenic disturbances. The results show that groundwater there is characterized by enriched strontium, with concentrations in the range of 0.

View Article and Find Full Text PDF

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF

Development of benznidazole orally disintegrating tablets for paediatric patients.

J Pharm Pharmacol

September 2025

Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica II, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.

Objectives: To develop the orphan drug benznidazole (BNZ) in orally disintegrating tablets, for the neglected disease American Trypanosomiasis (Chagas disease) therapy. Although children are highly affected by this disease, there are no specific commercial pharmaceutical preparations for this age group in Argentina and in many other countries.

Methods: In the production process, co-milling in a ball mill was applied to enhance dissolution rates, followed by direct compression.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.

View Article and Find Full Text PDF