Construction of complex memories via parallel distributed cortical-subcortical iterative integration.

Trends Neurosci

School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK. Electronic address:

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The construction of complex engrams requires hippocampal-cortical interactions. These include both direct interactions and ones via often-overlooked subcortical loops. Here, we review the anatomical organization of a hierarchy of parallel 'Papez' loops through the hypothalamus that are homologous in mammals from rats to humans. These hypothalamic loops supplement direct hippocampal-cortical connections with iterative reprocessing paced by theta rhythmicity. We couple existing anatomy and lesion data with theory to propose that recirculation in these loops progressively enhances desired connections, while reducing interference from competing external goals and internal associations. This increases the signal-to-noise ratio in the distributed engrams (neocortical and cerebellar) necessary for complex learning and memory. The hypothalamic nodes provide key motivational input for engram enhancement during consolidation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612902PMC
http://dx.doi.org/10.1016/j.tins.2022.04.006DOI Listing

Publication Analysis

Top Keywords

construction complex
8
complex memories
4
memories parallel
4
parallel distributed
4
distributed cortical-subcortical
4
cortical-subcortical iterative
4
iterative integration
4
integration construction
4
complex engrams
4
engrams requires
4

Similar Publications

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF

The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.

View Article and Find Full Text PDF

The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.

View Article and Find Full Text PDF

Nuclear biomolecular condensates are essential sub-compartments within the cell nucleus and play key roles in transcription and RNA processing. Bottom-up construction of nuclear architectures in synthetic settings is non-trivial but vital for understanding the mechanisms of condensates in real cellular systems. Here, we present a facile and versatile synthetic DNA protonucleus (PN) platform that facilitates localized transcription of branched RNA motifs with kissing loops (KLs) for subsequent condensation into complex condensate architectures.

View Article and Find Full Text PDF

Homemade explosives (HMEs) present significant challenges to forensic investigations due to their diverse chemical compositions and varying construction methods. Identifying the origin of these explosives is crucial for linking evidence across crime scenes. To address this challenge, this study employs an advanced data mining technique to enhance the forensic analysis of a unique dataset consisting of 344 HME samples collected from 129 real cases in China over an eight-year period (2015-2022).

View Article and Find Full Text PDF