ILDR1 promotes influenza A virus replication through binding to PLSCR1.

Sci Rep

Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan, 250100, Shandong, China.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a natural antiviral regulator, phospholipid scramblase 1 (PLSCR1) has been shown to inhibit influenza virus replication in infected cells through interacting with NP of influenza A virus (IAV). But its antiviral function as well as the underlying regulatory mechanism has not been examined in vivo. In the present work, we show that PLSCR1 expression is decreased in H1N1 SIV-infected mice, and Plscr1 mice are more susceptible to H1N1 SIV infection. By performing yeast two-hybrid screening, we identified immunoglobulin-like domain-containing receptor 1 (ILDR1) as a novel PLSCR1-binding partner. ILDR1 is highly expressed in the lungs, and its expression level is increased after virus infection. Interestingly, ILDR1 could not directly interact with virus NP protein, but could combine with PLSCR1 competitively. Our data indicates that there is a previously unidentified PLSCR1-ILDR1-NP regulatory pathway playing a vital role in limiting IAV infection, which provides novel insights into IAV-host interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122930PMC
http://dx.doi.org/10.1038/s41598-022-12598-3DOI Listing

Publication Analysis

Top Keywords

influenza virus
12
virus replication
8
virus
5
plscr1
5
ildr1
4
ildr1 promotes
4
promotes influenza
4
replication binding
4
binding plscr1
4
plscr1 natural
4

Similar Publications

Frequent emergence of respiratory viruses with pandemic potential, like SARS-CoV-2 or influenza, underscores the need for broad-spectrum prophylaxis. Existing vaccines show reduced efficacy against newly emerged variants, and the ongoing risk of new outbreaks highlights the importance of alternative strategies to prevent infection and viral transmission. As respiratory viruses primarily enter through the nose, formulations targeting the nasal epithelium are attractive candidates to neutralize pathogens and thus prevent or minimize infection.

View Article and Find Full Text PDF

Influenza A viruses remain a global health threat, yet no universal antibody therapy exists. Clinical programs have centered on neutralizing mAbs, only to be thwarted by strain specificity and rapid viral escape. We instead engineered three non-neutralizing IgG2a mAbs that target distinct, overlapping epitopes within the conserved N terminus of the M2 ectodomain (M2e).

View Article and Find Full Text PDF

Functional, immunogenetic, and structural convergence in influenza immunity between humans and macaques.

Sci Transl Med

September 2025

Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

Human B cell immunity to the influenza hemagglutinin (HA) stem, a universal vaccine target, is often stereotyped and immunogenetically restricted, posing hurdles to study outside of humans. Here, we show that cynomolgus macaques vaccinated with an HA stem immunogen elicit humanlike public B cell lineages targeting two major conserved sites of vulnerability, the central stem and anchor epitopes. Central stem antibodies were predominantly derived from V1-138, the macaque homolog of human V1-69, a V gene preferentially used in human central stem broadly neutralizing antibodies (bnAbs).

View Article and Find Full Text PDF

Unlabelled: There is a need for the development of broad-spectrum antiviral compounds that can act as first-line therapeutic countermeasures to emerging viral infections. Host-directed approaches present a promising avenue of development and carry the benefit of mitigating risks of viral escape mutants. We have previously found the SKI (super killer) complex to be a broad-spectrum, host-target with our lead compound ("UMB18") showing activity against influenza A virus, coronaviruses, and filoviruses.

View Article and Find Full Text PDF

Development of duplex crystal digital PCR (dPCR) assay for detection and differentiation of NDRV and MDRV.

Vet Anim Sci

December 2025

Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China.

Muscovy duck reovirus (MDRV) and Novel duck reovirus (NDRV) are highly infectious diseases of waterfowl, causing significant harm to the global poultry industry. Early detection and diagnosis of NDRV and MDRV in clinical samples are crucial for effectively preventing and controlling these diseases. This study developed a duplex crystal digital PCR (dPCR) assay for the differential detection of NDRV and MDRV.

View Article and Find Full Text PDF