98%
921
2 minutes
20
Inverted perovskite solar cells (PSCs) have received widespread attention due to their facile fabrication and wide applications. However, their power conversion efficiency (PCE) is reported lower than that of regular PSCs because of the undesirable interfacial contact between perovskite and the hydrophobic hole transport layer (HTL). Here, an interface regulation strategy is proposed to overcome this limitation. A small molecule ([2-(9H-carbazol-9-yl) ethyl] phosphonic acid, abbreviated as 2P), composed of carbazole and phosphonic acid groups, is inserted between perovskite and HTL. Morphological characterization and theoretical calculation reveal that perovskite bonds stronger on 2P-modified HTL than on pristine HTL. The improved interfacial contact facilitates hole extraction and retards degradation. Upon the incorporation of 2P, inverted PSCs deliver a high PCE of over 22% with superior stability, keeping 84.6% of initial efficiency after 7200 h storage under an ambient atmosphere with a relative humidity of ≈30-40%. This strategy provides a simple and efficient way to boost the performance of inverted PSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202201694 | DOI Listing |
ACS Nano
September 2025
Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
Mechanical stimuli have been shown to dynamically alter solid-liquid interfaces and induce electron transfer, enabling catalytic reactions, most notably contact-electro-catalysis (CEC). However, the underlying mechanism of charge transfer at solid-liquid interfaces under mechanical stimulation remains unclear, particularly at semiconductor-liquid interfaces. To date, rare studies have reported on the catalytic activity of semiconductor-liquid interfaces under mechanical stimulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Surface Science Laboratory, Department of Materials and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
The performance of NiO-based electrocatalysts for the oxygen evolution reaction (OER) is strongly influenced by the interface between the metal support (current collector) and the catalyst layer, which modulates electronic properties and electrochemical activity. This study systematically investigates the solid-solid interface behavior of NiO thin films prepared by reactive magnetron sputtering on Pt, Au, and Ni, followed by electrochemical characterization. Stepwise NiO deposition and X-ray photoelectron spectroscopy reveal distinct band alignment and electronic structure differences at the metal-catalyst interface.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Department of Physics, Jishou University, Renmin South Road, Jishou, Hunan, 416000, CHINA.
Based on the first-principles calculations, we theoretically investigate the electronic structure, interfacial and optical properties of the tellurene/ZnSe (namely α- and γ-Te/ZnSe) van der Waals heterostructures (vdWHs). In the most stable stacking pattern, the α-Te/ZnSe vdWH exhibits an indirect band gap of 0.41 eV and forms a type-I band alignment, while the γ-Te/ZnSe vdWH possesses a p-type Schottky contact with a favorable Schottky barrier height of 0.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.
The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.
Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.
View Article and Find Full Text PDF