Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The inability to halt or even delay the course of Alzheimer's disease (AD) forces the development of new molecular signatures and therapeutic strategies. Insulin like growth factor 1 (IGF1) is a promising target for AD treatment, yet exact mechanisms of AD ascribed to IGF1 remain elusive. Herein, gene expression profiles of 195 samples were analyzed and 19,245 background genes were generated, among which 4,424 differentially expressed genes (DEGs) were overlapped between AD/control and IGF1-low/high groups. Based on such DEGs, seven co-expression modules were established by weight gene correlation network analysis (WGCNA). The turquoise module had the strongest correlation with AD and IGF1-low expression, the DEGs of which were enriched in GABAergic synapse, long-term potentiation, mitogen-activated protein kinase (MAPK), Ras, and forkhead box O (FoxO) signaling pathways. Furthermore, cross-talking pathways of IGF1, including MAPK, Ras, and FoxO signaling pathways were identified in the protein-protein interaction network. According to the area under the curve (AUC) analysis, down-regulation of IGF1 exhibited good diagnostic performance in AD prediction. Collectively, our findings highlight the involvement of low IGF1 in AD pathogenesis via MAPK, Ras, and FoxO signaling pathways, which might advance strategies for the prevention and therapy of AD based on IGF1 target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096571PMC
http://dx.doi.org/10.1155/2022/8169981DOI Listing

Publication Analysis

Top Keywords

mapk ras
16
foxo signaling
16
signaling pathways
16
ras foxo
12
insulin growth
8
growth factor
8
alzheimer's disease
8
igf1
6
pathways
5
down-regulation insulin
4

Similar Publications

Nanoscale organization of integrin-mediated receptor crosstalk is crucial for controlling cellular signaling in cancer biology. Previously, interactions between integrin αvβ6 and receptor tyrosine kinases (RTKs) have been implicated in cancer progression, but the spatial regulatory mechanisms remain undefined. Here, we developed a programmable DNA origami-based platform for nanoscale control of heteroligand multivalency and spacing, enabling systematic investigation of αvβ6-RTK interactions in cancer biology.

View Article and Find Full Text PDF

Targeting pathological ERK1/2 signaling in cancer and beyond.

Trends Mol Med

September 2025

Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften (ISAS) e.V., 44139 Dortmund, Germany. Electronic address:

Dysregulation of the RAF-MEK-ERK1/2 pathway is involved in the pathoetiology of many diseases. Its central role in cancer has led to the development of drugs targeting upstream receptors, RAS, and kinases in the extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) signaling cascade. The use of these drugs in cancer therapy - together with ongoing monitoring of their effectiveness, evolving side-effects, and resistance mechanisms - has expanded our knowledge of both the physiological and pathological functions of ERK1/2 and could thus provide potential alternative therapeutic strategies.

View Article and Find Full Text PDF

Chemogenetic tuning reveals optimal MAPK signaling for cell-fate programming.

Cell Rep

September 2025

Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA. Electronic address:

Cell states evolve through the combined activity of signaling pathways and gene networks. While transcription factors can direct cell fate, these factors rely on a receptive cell state. How signaling levels contribute to the emergence of receptive cell states remains poorly defined.

View Article and Find Full Text PDF

Proto-oncogenes in the superfamily play dual roles in maintaining cellular homeostasis, such as regulating growth signals and contributing to cancer development through proliferation and deregulation. Activating proto-oncogenes in vitro transforms cells, underscoring their centrality in gene regulation and cellular networks. Despite decades of research, poor outcomes in advanced cancers reveal gaps in understanding Ras-driven mechanisms or therapeutic strategies.

View Article and Find Full Text PDF

Hepatitis B virus (HBV)-associated liver cirrhosis, characterized by progressive fibrosis and regenerative nodule formation, remains a critical public health concern due to its high risk of progression to hepatocellular carcinoma (HCC). The matrisome-comprising extracellular matrix (ECM) components such as collagens, laminins, fibronectin, glycoproteins, and proteoglycans-plays a pivotal role in disease pathogenesis. Previous studies have shown that HBV infection modulates ECM composition and activates fibrogenic responses through hepatic stellate cells, contributing to cirrhosis and eventual HCC development.

View Article and Find Full Text PDF