98%
921
2 minutes
20
Nanoscale organization of integrin-mediated receptor crosstalk is crucial for controlling cellular signaling in cancer biology. Previously, interactions between integrin αvβ6 and receptor tyrosine kinases (RTKs) have been implicated in cancer progression, but the spatial regulatory mechanisms remain undefined. Here, we developed a programmable DNA origami-based platform for nanoscale control of heteroligand multivalency and spacing, enabling systematic investigation of αvβ6-RTK interactions in cancer biology. We identified a spatial activation threshold for the αvβ6-specific peptide A20FMDV2 that promotes A375P β6 cell adhesion and FAK phosphorylation along with spacing- and density-dependent EGFR phosphorylation triggered by EGFR aptamers. Importantly, at an optimized peptide-to-RTK (EGFR, HER2, and Met) aptamer ratio and ligand density, αvβ6-RTK coactivation synergistically enhanced cell spreading and amplified phosphorylation of AKT and ERK, part of the PI3K-AKT and Ras-MAPK pathways. Validation in breast cancer models (MDA-MB-468 and BT-474) highlighted cell-type-specific signaling dependencies. This platform offers a framework for tumor microenvironment mimics and integrin-RTK-targeted therapies, emphasizing the critical role of nanoscale ligand patterning and multivalency in cancer progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5c07581 | DOI Listing |
Clin Anat
September 2025
Department of Communication Disorders and Sciences, Rush University Medical Center, Chicago, Illinois, USA.
This research sought to examine the prevalence and severity of hyperostosis frontalis interna (HFI) in the Chicagoland anatomical body donor population. The study further aimed to elucidate potential demographic risk factors for HFI, including sex, age at death, and structural vulnerability index (SVI), as well as any common comorbidities, as gleaned from death certificates. HFI is an irregular bony overgrowth of the endocranial surface of the frontal bone.
View Article and Find Full Text PDFFront Immunol
September 2025
Institute of Pulmonary Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
Neutrophil extracellular traps (NETs) are DNA-protein structures released during a form of programmed neutrophil death known as NETosis. While NETs have been implicated in both tumor inhibition and promotion, their functional role in cancer remains ambiguous. In this study, we compared the NET-forming capacity and functional effects of NETs derived from lung cancer (LC) patients and healthy donors (H).
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institute and Karolinska University Hospital Solna, Stockholm, Sweden.
Background: Metabolic reprogramming is an important hallmark of cervical cancer (CC), and extensive studies have provided important information for translational and clinical oncology. Here we sought to determine metabolic association with molecular aberrations, telomere maintenance and outcomes in CC.
Methods: RNA sequencing data from TCGA cohort of CC was analyzed for their metabolic gene expression profile and consensus clustering was then performed to classify tumors into different groups/subtypes.
J Healthc Sci Humanit
January 2024
Program Manager, Center for Biomedical Research/Research Centers in Minority Institutions (TU CBR/RCMI), Department of Biology, College of Arts and Sciences (CAS), Tuskegee University, Phone: (334) 724-4391, Email:
The emergence of the Novel COVID-19 Pandemic has undoubtedly impacted the lives of individuals across the globe. It has drawn the attention of major public health agencies as they work intensely towards understanding the behavior of the virus causing the disease, while simultaneously establishing ways to curb the spread of the virus among populations. As of the time of writing, 7,949,973 confirmed cases have been reported globally; with the United States (US) contributing to 26.
View Article and Find Full Text PDFFront Nutr
August 2025
Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
Background: Voghera pepper (VP) extracts were demonstrated to have anti-oxidant ability in several cell types.
Purpose: This study aimed to assess whether VP-extracts could lower oxidative stress and modulate thyroid cancer (TC) cells behavior .
Methods: Extracts were analyzed using the LC-DAD-MS system.