98%
921
2 minutes
20
Understanding material behavior is key to discovering innovative applications in any field. Regardless of the exciting mechanical properties of polyurea, there has been a limited effort in studying the use of polyurea for structural retrofit and strengthening applications. This study aims to understand the behavior of polyurea under different tensile loading conditions to provide critical information towards enabling the future use of polyurea in structural applications. Several standard coupons are tested under various tensile loading conditions to understand the mechanical behavior of eight different commercial polyureas. The study provides the full stress-strain characteristic curves that can be used for constitutive modeling purposes. The results show that polyurea has a wide range of properties from low strength flexible nature to high strength rigid nature. All tested polyureas displayed some level of rate dependency, i.e., ultimate strength is a function of loading rates. The high-strength polyureas tested only show slight rate dependency and good strength retention under cyclic and fatigue tensile loading, suggesting that polyureas have promising mechanical properties for potential structural applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102770 | PMC |
http://dx.doi.org/10.3390/polym14091878 | DOI Listing |
Two-photon polymerization (TPP) enables the fabrication of intricate 3D microstructures with submicron precision, offering significant potential in biomedical applications like tissue engineering. In such applications, to print materials and structures with defined mechanics, it is crucial to understand how TPP printing parameters impact the material properties in a physiologically relevant liquid environment. Herein, an experimental approach utilizing microscale tensile testing (μTT) for the systematic measurement of TPP-fabricated microfibers submerged in liquid as a function of printing parameters is introduced.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Rehabilitation Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Key Lab of Guangdong Province for High Property and Functional Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Inspired by spider silk, polyphenolic nanodots (PTa) loaded multi-layer MXene (mMXene-PTa) through hydrogen and coordination bonds was prepared by self-polymerizing tannic acid on mMXene and used as a new crosslinker for polyvinyl alcohol (PVA). Together with starch (ST), mMXene-PTa was compounded with PVA and exfoliated to fabricate PVA/ST/mMXene-PTa nanocomposite. The phenolic hydroxyl groups in PTa formed high-density H-bonds with PVA and ST, creating an organic-inorganic dynamic crosslinking network with mMXene-PTa as nodes.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China. Electronic address:
This work reports an ethanol-mediated freeze-drying (EMFD) strategy that enables the scalable production of high-performance bacterial cellulose aerogels (BCAs), effectively addressing key limitations of conventional methods such as supercritical drying and standard freeze-drying, including fragility, low mechanical strength, and high cost. Specifically, by replacing water in bacterial cellulose hydrogels (BCHs) with ethanol-water solution (EWs) prior to freeze-drying, the process limits ice crystal formation and reduces capillary forces and adhesion, thereby preserving structural integrity and enhancing mechanical properties. The effects of EWs concentration on BCA morphology, volume shrinkage, mechanical strength, and pore structure were systematically investigated.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
August 2025
Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan; Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan. Electronic address:
Hamstring strain injuries frequently occur during the late swing phase of running; however, the breaking strength of the human hamstring muscle-tendon complexes remains unclear. This study aimed to determine the breaking strength of human hamstring muscle-tendon complexes. To this end, seven cadaveric specimens preserved using the Thiel's method were examined.
View Article and Find Full Text PDF