Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nucleic-acid-based immune adjuvants have been extensively investigated for the design of cancer vaccines. However, nucleic acids often require the assistance of a carrier system to improve cellular uptake. Yet, such systems are prone to carrier-associated adaptive immunity, leading to difficulties in a multidose treatment regimen. Here, we demonstrate that a spherical nucleic acid (SNA)-based self-adjuvanting system consisting of phosphodiester oligonucleotides and vitamin E can function as a potent anticancer vaccine without a carrier. The two functional modules work synergistically, serving as each other's delivery vector to enhance toll-like receptor 9 activation. The vaccine rapidly enters cells carrying OVA model antigens, which enables efficient activation of adaptive immunity and . In OVA-expressing tumor allograft models, both prophylactic and therapeutic vaccinations significantly retard tumor growth and prolong animal survival. Furthermore, the vaccinations were also able to reduce lung metastasis in a B16F10-OVA model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164000PMC
http://dx.doi.org/10.1021/acs.nanolett.2c00723DOI Listing

Publication Analysis

Top Keywords

spherical nucleic
8
nucleic acids
8
adaptive immunity
8
maximizing tlr9
4
tlr9 activation
4
activation cancer
4
cancer immunotherapy
4
immunotherapy dual-adjuvanted
4
dual-adjuvanted spherical
4
acids nucleic-acid-based
4

Similar Publications

An ultrasensitive biosensor for H1N1 virus coupled with 3D spherical DNA nanostructure and CRISPR-Cas12a.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China. Electronic address:

To achieve ultrasensitive and real-time detection of the H1N1 influenza virus, this study designed a nucleic acid-free fluorescent biosensor based on 3D spherical DNA nanostructure and CRISPR/Cas12a (3D-SDNC). The biosensor constructs a rigid 3D nano-framework via self-assembly of six oligonucleotide chains, with H1N1-specific nucleic acid aptamers and Cas12a activator strands strategically positioned at multi-spined vertices for precise spatial coupling between viral recognition and signal transduction. Upon aptamer-virus binding, the induced conformational change liberates the activator strand, thereby activating the trans-cleavage activity of the Cas12a/crRNA complex to efficiently cleave the HEX/BHQ1 double-labeled fluorescent probe and initiate cascade signal amplification.

View Article and Find Full Text PDF

Natural quercetin-derived carbon nanodots for dual antibacterial and anti-inflammatory therapy against bacterial infections.

Colloids Surf B Biointerfaces

September 2025

School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163,

Bacterial infections and the associated inflammatory responses present significant challenges to public health, underscoring the need for innovative therapeutic strategies. In this study, novel carbon dots (QA-CDs) derived from quercetin (QU) and 4-aminophenol (4-AP) were synthesized using a one-step hydrothermal method. This approach merges the antimicrobial properties of phenolic compounds with the multifunctional advantages of carbon-based nanomaterials.

View Article and Find Full Text PDF

A general genome editing strategy using CRISPR lipid nanoparticle spherical nucleic acids.

Proc Natl Acad Sci U S A

September 2025

Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208.

Genome editing with CRISPR-Cas systems hold promise for treating a wide range of genetic disorders and cancers. However, efficient delivery of genome editors remains challenging due to the requirement for the simultaneous delivery or intracellular generation of Cas proteins, guide RNAs, and, in some applications, donor DNAs. Furthermore, the immunogenicity and toxicity of delivery vehicles can limit the safety and efficacy of genetic medicines.

View Article and Find Full Text PDF

The flexible and modular design of synthetic cells, comprising lipid vesicles capable of imitating the structure and function of living cells, facilitates their application as drug delivery devices. The ability to control the synthesis of biomolecules within synthetic cells using a tissue-penetrating stimulus opens up additional levels of functionality that has the potential to improve biological potency and circumvent drug leakage from preloaded vesicles. To this end, we have designed spherical nucleic acids comprising DNA promoter sequences decorating magnetic nanoparticle cores.

View Article and Find Full Text PDF

The measurement of three-dimensional genome folding in the nucleus, mostly through Hi-C methods, is expressed as contact frequencies between genomic segments, without anchoring to physical axes of the spherical nucleus. Here, we mapped the chromatin contacts along nuclear radial axis and built radial score by factoring in contact frequencies. The chromatin high-order structures exhibit rich diversity along radial axis.

View Article and Find Full Text PDF