Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multimodal advances in single-cell sequencing have enabled the simultaneous quantification of cell surface protein expression alongside unbiased transcriptional profiling. Here, we present LinQ-View, a toolkit designed for multimodal single-cell data visualization and analysis. LinQ-View integrates transcriptional and cell surface protein expression profiling data to reveal more accurate cell heterogeneity and proposes a quantitative metric for cluster purity assessment. Through comparison with existing multimodal methods on multiple public CITE-seq datasets, we demonstrate that LinQ-View efficiently generates accurate cell clusters, especially in CITE-seq data with routine numbers of surface protein features, by preventing variations in a single surface protein feature from affecting results. Finally, we utilized this method to integrate single-cell transcriptional and protein expression data from SARS-CoV-2-infected patients, revealing antigen-specific B cell subsets after infection. Our results suggest LinQ-View could be helpful for multimodal analysis and purity assessment of CITE-seq datasets that target specific cell populations (e.g., B cells).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017149PMC
http://dx.doi.org/10.1016/j.crmeth.2021.100056DOI Listing

Publication Analysis

Top Keywords

surface protein
20
protein expression
16
cell surface
8
accurate cell
8
purity assessment
8
cite-seq datasets
8
protein
6
cell
6
surface
5
linq-view
5

Similar Publications

Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques.

View Article and Find Full Text PDF

Mitochondria-associated condensates maintain mitochondrial homeostasis and promote lifespan.

Nat Aging

September 2025

State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.

Membraneless organelles assembled by liquid-liquid phase separation interact with diverse membranous organelles to regulate distinct cellular processes. It remains unknown how membraneless organelles are engaged in mitochondrial homeostasis. Here we demonstrate that mitochondria-associated translation organelles (MATOs) mediate local synthesis of proteins required for structural and functional maintenance of mitochondria.

View Article and Find Full Text PDF

Cholesterol biosynthesis is more activated in triple negative breast cancer (TNBC) than in other subtype breast cancer and plays essential role in facilitating TNBC. However, the regulatory network and how cholesterol biosynthesis contribute to TNBC development and progression are not well elucidated. Here, we found that reticulum membrane protein complex 2 (EMC2) is highly expressed in TNBC and predicts short survival of patients.

View Article and Find Full Text PDF

Atherosclerosis, a major cause of cardiovascular diseases, is characterized by the buildup of lipids and chronic inflammation in the arteries, leading to plaque formation and potential rupture. Despite recent advances in single-cell transcriptomics (scRNA-seq), the underlying immune mechanisms and transformations in structural cells driving plaque progression remain incompletely defined. Existing datasets often lack comprehensive coverage and consistent annotations, limiting the utility of downstream analyses.

View Article and Find Full Text PDF

Structural Elucidation and Covalent Modulation of the Autorepressed Orphan Nuclear Receptor NR2F6.

ACS Chem Biol

September 2025

Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Technische Universiteit Eindhoven, 5612 AZ Eindhoven, The Netherlands.

The orphan nuclear receptor NR2F6 (Nuclear Receptor subfamily 2 group F member 6) is an emerging therapeutic target for cancer immunotherapy. Upregulation of NR2F6 expression in tumor cells has been linked to proliferation and metastasis, while in immune cells NR2F6 inhibits antitumor T-cell responses. Small molecule modulation of NR2F6 activity might therefore be a novel strategy in cancer treatment, benefiting from this dual role of NR2F6.

View Article and Find Full Text PDF