Mathematical modeling of dark fermentation of macroalgae for hydrogen and volatile fatty acids production.

Bioresour Technol

Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A mathematical model of H and volatile fatty acids (VFAs) production via dark fermentation of particulate macroalgal substrates is presented. Carbohydrates, proteins, and lipids in the particulate substrate are convert to H, CO, and VFAs via disintegration/solubilization, hydrolysis, and acidogenesis. Hydrolysis is modeled using a combined surface-limiting model combined with a first-order reaction model to describe both microbial hydrolysis and physical solubilization. Experimental and published data obtained using Saccharina japonica as the substrate are used to calibrate and validate the model. The model prediction featured a good accuracy, with high R of 0.912 - 0.976 for all end products. The physical solubilisation accounts for 28.4% of the total hydrolysis. By the model simulation, a H production of 103.2 mL/g-VS and VFA production of 0.41 g/g-VS are found at optimum conditions of 20 g-TS/L (13.2 g-VS/L) of substrate concentration and 7.0 of initial pH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127193DOI Listing

Publication Analysis

Top Keywords

dark fermentation
8
volatile fatty
8
fatty acids
8
model
6
mathematical modeling
4
modeling dark
4
fermentation macroalgae
4
macroalgae hydrogen
4
hydrogen volatile
4
production
4

Similar Publications

Eurotium Cristatum fermented instant dark tea prevents obesity and promotes adipose thermogenesis via modulating the gut microbiota.

Food Res Int

November 2025

Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China. Electronic ad

In this study, we produced instant dark tea (IDT) by liquid-state fermentation of Ziyang selenium-enriched summer-autumn tea leaves utilizing Eurotium cristatum. Then, the novel mechanism of IDT against obesity was investigated. Our results for the first time revealed that IDT could alleviate obesity by regulating the gut microbiota and promoting adipose thermogenesis.

View Article and Find Full Text PDF

The bioconversion of purple non-sulfur photosynthetic bacteria (PNSB) based on real food waste (FW) fermentation broth is crucial for FW resource recovery. This study enhanced the bioconversion efficiency of FW fermentation broth by PNSB through light intensity and photoperiod optimization, while elucidating the synthesis mechanisms of high-value cell inclusions. The results demonstrated that 4500 lx-L/D = 16/8 significantly enhanced R.

View Article and Find Full Text PDF

Dark tea ameliorates liver fibrosis via FXR/TGR5-mediated intestinal permeability and liver sinusoidal capillarization.

J Ethnopharmacol

September 2025

Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China. Electronic address:

Ethnopharmacological Relevance: Dark tea, a post-fermented tea, has traditionally been used to regulate liver disorders. As an ethnomedicinal plant, its efficacy in alleviating chronic liver disease has been demonstrated.

Aim Of The Study: This study explored the protective effect and potential mechanism of dark tea extract (DTE) against hepatic fibrosis.

View Article and Find Full Text PDF

Qingzhuan tea (QZT) acquires distinctive sensory and functional properties, but the quality evolution during lengthy industrial processing remains unclear. Therefore, this study deciphers the flavor evolution mechanisms by analyzing non-volatile dynamics from fresh leaves to finished tea. A total of 821 metabolites were identified, with 136 differential metabolites mainly comprising lipid degradation and flavonoids polymerization potentially driving the formation of flavor.

View Article and Find Full Text PDF

Manufacturing Process Analysis and Tea Chemical Component Characterization on Ann Tea Quality Formation.

J Agric Food Chem

September 2025

National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Shool of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China.

Ann tea is a traditional Chinese dark tea produced in Anhui Province, and it is beloved by consumers for its pleasant flavor and health attribute. Here, the detailed manufacturing process was investigated, and samples from key processing steps were chemical characterized. During the manufacturing process, about 15% of catechins and monosaccharide were significantly reduced and transformed to polymers, such as theanine-glucose, procyanidin dimer, and theasinensins.

View Article and Find Full Text PDF