98%
921
2 minutes
20
Background: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. For patients with GBM, the median overall survival (OS) is 14.6 months and the 5-year survival rate is 7.2%. It is imperative to develop a reliable model to predict the survival probability in new GBM patients. To date, most prognostic models for predicting survival in GBM were constructed based on bulk RNA-seq dataset, which failed to accurately reflect the difference between tumor cores and peripheral regions, and thus show low predictive capability. An effective prognostic model is desperately needed in clinical practice.
Methods: We studied single-cell RNA-seq dataset and The Cancer Genome Atlas-glioblastoma multiforme (TCGA-GBM) dataset to identify differentially expressed genes (DEGs) that impact the OS of GBM patients. We then applied the least absolute shrinkage and selection operator (LASSO) Cox penalized regression analysis to determine the optimal genes to be included in our risk score prognostic model. Then, we used another dataset to test the accuracy of our risk score prognostic model.
Results: We identified 2128 DEGs from the single-cell RNA-seq dataset and 6461 DEGs from the bulk RNA-seq dataset. In addition, 896 DEGs associated with the OS of GBM patients were obtained. Five of these genes (LITAF, MTHFD2, NRXN3, OSMR, and RUFY2) were selected to generate a risk score prognostic model. Using training and validation datasets, we found that patients in the low-risk group showed better OS than those in the high-risk group. We validated our risk score model with the training and validating datasets and demonstrated that it can effectively predict the OS of GBM patients.
Conclusion: We constructed a novel prognostic model to predict survival in GBM patients by integrating a scRNA-seq dataset and a bulk RNA-seq dataset. Our findings may advance the development of new therapeutic targets and improve clinical outcomes for GBM patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120724 | PMC |
http://dx.doi.org/10.1002/brb3.2575 | DOI Listing |
PLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Department of Health Sciences, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100, Novara, Italy.
A Python-scripted software tool has been developed to help study the heterogeneity of gene changes, markedly or moderately expressed, when several experimental conditions are compared. The analysis workflow encloses a scorecard that groups genes based on relative fold-change and statistical significance, providing additional functions that facilitate knowledge extraction. The scorecard reports highlight unique patterns of gene regulation, such as genes whose expression is consistently up- or down-regulated across experiments, all of which are supported by graphs and summaries to characterize the dataset under investigation.
View Article and Find Full Text PDFFront Mol Neurosci
August 2025
Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, United States.
Introduction: Endothelial-to-mesenchymal transition (EndoMT), cell death, and fibrosis are increasingly recognized as contributing factors to Alzheimer's disease (AD) pathology, but the underlying transcriptomic mechanisms remain poorly defined. This study aims to elucidate transcriptomic changes associated with EndoMT, diverse cell death pathways, and fibrosis in AD using the 3xTg-AD mouse model.
Methods: Using RNA-seq data and knowledge-based transcriptomic analysis on brain tissues from the 3xTg-AD mouse model of AD.
Adv Sci (Weinh)
September 2025
School of Artificial Intelligence, Jilin University, Changchun, 130012, China.
Single-cell multi-omics technologies are pivotal for deciphering the complexities of biological systems, with Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) emerging as a particularly valuable approach. The dual-modality capability makes CITE-seq particularly advantageous for dissecting cellular heterogeneity and understanding the dynamic interplay between transcriptomic and proteomic landscapes. However, existing computational models for integrating these two modalities often struggle to capture the complex, non-linear interactions between RNA and antibody-derived tags (ADTs), and are computationally intensive.
View Article and Find Full Text PDFInt Immunopharmacol
August 2025
Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China. Electronic address:
Background: Protein lactylation has been implicated in stress-responsive cellular mechanisms, yet its role in lung transplantation-associated ischemia-reperfusion injury (IRI) remains undefined.
Methods: Transcriptomic profiles from GSE145989 were analyzed through differential expression analysis (limma) and weighted gene co-expression network analysis (WGCNA). Integrating the identified genes with lactylation-related signatures uncovered key lactylation-related genes (LRGs) as potential targets.