Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Estuarine ecosystems have very high ecological and economic value, and also act as a buffer for coastal oceans by processing nutrient inputs from terrestrial sources. However, ongoing pressures from increased urbanisation and agriculture, overlaid by climate change, has reduced inflows and increased nutrient loads that challenge the health and buffering capacity of these ecosystems. This study aimed to investigate whether restoring the bioturbating activity of Simplisetia aequisetis (Polychaeta: Nereididae) and other macrofauna could improve biogeochemical conditions in 'hostile' (i.e. hypersaline, sulfide-rich) sediments. To achieve this aim, we conducted an in situ experiment in the Coorong estuarine-lagoon ecosystem, translocating hostile hypersaline sediments, devoid of bioturbating macrofauna, to a 'healthy' (lower salinity) location where macrobenthic fauna naturally occur, and manipulating the S. aequisetis density in the sediments. Porewater, solid-phase, and diffusive equilibrium and diffusive gradient in thin-films (DET/DGT) measurements showed that bioturbation by macrobenthic fauna significantly influenced sediment biogeochemistry and remediated hostile conditions in sediment within a short time (four weeks) irrespective of S. aequisetis density. Bioturbation promoted sediment oxygenation, while salinity and the concentrations of total organic carbon and porewater sulfide, ammonium, and phosphate all decreased over time at all sediment depths. This research highlights the importance of macrobenthic communities and their functional traits for improving sediment conditions, promoting resilience to eutrophication, providing a nature-based remediation option, and in general ensuring healthy functioning of estuarine ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.155201DOI Listing

Publication Analysis

Top Keywords

estuarine ecosystems
8
macrobenthic fauna
8
aequisetis density
8
sediment
5
restoration benthic
4
benthic macrofauna
4
macrofauna promotes
4
promotes biogeochemical
4
biogeochemical remediation
4
remediation hostile
4

Similar Publications

Marine ecosystems, particularly estuaries, are increasingly threatened by anthropogenic pressures. The Odiel Estuary has suffered severe contamination from acid mine drainage and industrial activities. Since 1986, mitigation efforts have been implemented, yet their long-term ecological effectiveness remains under-evaluated.

View Article and Find Full Text PDF

Estuarine plumes: Modulators of dissolved organic matter molecular signatures and biogeochemical fate in coastal ecosystems.

Mar Pollut Bull

September 2025

School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; The Research Center of Ocean Climate, Sun Yat-sen University, Zhuhai 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of E

Estuarine plumes (EPs) are recognized as critical drivers of dissolved organic matter (DOM) heterogeneity in coastal zones, primarily by inducing phytoplankton blooms and subsequent bottom-water dissolved oxygen (DO) depletion. However, the specific mechanisms governing the EP-driven transformations of DOM molecular composition and biogeochemical fate remain elusive. Here, we integrated optical spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry to characterize the molecular signatures of DOM and their biogeochemical transformations within EP-influenced bottom waters of the Pearl River Estuary.

View Article and Find Full Text PDF

High-throughput phytoplankton monitoring and screening of harmful and bloom-forming algae in coastal waters with updated functional screening database.

Mar Pollut Bull

September 2025

Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong; State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Kowloon, Hong Kong. Electronic address:

Climate change and anthropogenic pressures alter phytoplankton phenology, distribution, and bloom frequency. Healthy phytoplankton communities are crucial for biogeochemical processes, blue carbon sequestration, and climate change mitigation. By employing high-throughput 18S V4 rRNA metabarcoding, we addressed the need for profiling phytoplankton community and response mechanisms in urbanized coastal ecosystems.

View Article and Find Full Text PDF

Picocyanobacteria in the Chesapeake Bay: isolation, diversity, and adaptation.

Mar Life Sci Technol

August 2025

Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202 USA.

Tiny unicellular cyanobacteria or picocyanobacteria (0.5-3 µm) are important due to their ecological significance. Chesapeake Bay is a temperate estuary that contains abundant and diverse picocyanobacteria.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in coastal regions poses severe environmental risks, yet bacterial defense mechanisms against Cd remain poorly understood. This study unveils distinct tolerant strategies of two highly Cd-tolerant bacteria isolated from the Yangtze River estuary: Comamonas sp. Y49 and Aeromonas sp.

View Article and Find Full Text PDF