98%
921
2 minutes
20
The potential of cellulose nanocomposites in the new-generation super-performing nanomaterials is huge, primarily in medical and environment sectors, and secondarily in food, paper, and cosmetic sectors. Despite substantial illumination on the molecular aspects of cellulose synthesis, various process features, namely, cellular export of the nascent polysaccharide chain and arrangement of cellulose fibrils into a quasi-crystalline configuration, remain obscure. To unleash its full potential, current knowledge on nanocellulose dispersion and disintegration of the fibrillar network and the organic/polymer chemistry needs expansion. Bacterial cellulose biosynthesis mechanism for scaled-up production, namely, the kinetics, pathogenicity, production cost, and product quality/consistency remain poorly understood. The bottom-up bacterial cellulose synthesis approach makes it an interesting area for still wider and promising high-end applications, primarily due to the nanosynthesis mechanism involved and the purity of the cellulose. This study attempts to identify the knowledge gap and potential wider applications of bacterial cellulose and bacterial nanocellulose. This review also highlights the manufacture of bacterial cellulose through low-cost substrates, that is, mainly waste from brewing, agriculture, food, and sugar industries as well as textile, lignocellulosic biorefineries, and pulp mills.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964354 | PMC |
http://dx.doi.org/10.3389/fbioe.2022.780409 | DOI Listing |
Beilstein J Nanotechnol
August 2025
Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, Jilin, People's Republic of China.
To address the issue of biological pollution in cellulose triacetate (CTA) membranes during seawater desalination, silver (Ag) nanoparticles were incorporated onto the CTA surface using polydopamine (PDA). PDA, which contains phenolic and amino groups, exhibits excellent adhesiveness and provides active sites for the attachment and reduction for Ag nanoparticles. Various characterizations confirm the successful introduction of Ag nanoparticles onto the surface of the PDA-modified CTA (PCTA) membrane and the preservation of CTA microstructures.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China. Electronic address:
Emodin is a natural anthraquinone derivative with poor water solubility, which limits its antibacterial activity. The purpose of this work is to investigate the antibacterial activity of emodin nanocrystals (EMD-NCs) with different particle sizes against Staphylococcus aureus (S. aureus) and explores its underlying mechanisms.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:
Development of effective, safe, and degradable food packaging is essential to meet the demands of consumers and to ensure the continued growth of the food industry. In this study, superabsorbent bioactive aerogels based on cellulose and polyvinyl alcohol combined with the antibacterial bioactive extracts extracted from Portulaca oleracea were fabricated for the preservation of chilled meats. The main physicochemical and mechanical properties of the bioactive aerogels were characterized and evaluated.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.
View Article and Find Full Text PDFMacromol Biosci
September 2025
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain.
This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.
View Article and Find Full Text PDF