Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a unique, extensive, and open synaptic physiology analysis platform and dataset. Through its application, we reveal principles that relate cell type to synaptic properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Synaptic properties are heterogeneous in most subclass-to-subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, whereas the strength axis accounts for substantial heterogeneity within the subclass. In the human cortex, excitatory-to-excitatory synaptic dynamics are distinct from those in the mouse cortex and vary with depth across layers 2 and 3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9970277PMC
http://dx.doi.org/10.1126/science.abj5861DOI Listing

Publication Analysis

Top Keywords

synaptic dynamics
8
mouse human
8
synaptic properties
8
human cortex
8
cell subclass
8
synaptic
5
local connectivity
4
connectivity synaptic
4
dynamics
4
dynamics mouse
4

Similar Publications

Restoring Synaptic Balance in Schizophrenia: Insights From a Thalamo-Cortical Conductance-Based Model.

Schizophr Bull

September 2025

Department of Psychology, Faculty of Health & Life Sciences, University of Exeter, Exeter, EX4 4QG, United Kingdom.

Background And Hypothesis: The dysconnectivity hypothesis of schizophrenia suggests that atypical neural communication underlies the disorder's diverse symptoms. Building on this framework, we propose that specific synaptic disturbances within thalamo-cortical circuits contribute to an imbalance in excitation and inhibition, leading to alteration in oscillations. Our study investigates these alterations and explores whether synaptic restoration can remediate neural activity of schizophrenia and align it with healthy patterns.

View Article and Find Full Text PDF

Complement C4b as a Key Mediator of Synaptic Loss and Cognitive Decline in Brain Aging.

Mol Ther

September 2025

Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu

Brain aging is a major risk factor for cognitive decline and neurodegenerative diseases, driven by synaptic loss, reduced synaptic function, and inflammation. However, the molecular mechanisms underlying these dysfunctions remain unclear. Here, we conducted comparative transcriptomic analyses of brain regions (cortex and hippocampus) and kidney tissues, a peripheral organ with documented age-related dysfunction.

View Article and Find Full Text PDF

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Dysregulated spine morphology is a common feature in the pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.

View Article and Find Full Text PDF

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF