Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Light stimulates carotenoid synthesis in plants during photomorphogenesis through the expression of PHYTOENE SYNTHASE (PSY), a key gene in carotenoid biosynthesis. The orange carrot (Daucus carota) synthesizes and accumulates high amounts of carotenoids in the taproot that grows underground. Contrary to other organs, light impairs carrot taproot development and represses the expression of carotenogenic genes, such as DcPSY1 and DcPSY2, reducing carotenoid accumulation. By means of RNA sequencing, in a previous analysis, we observed that carrot PHYTOCHROME RAPIDLY REGULATED1 (DcPAR1) is more highly expressed in the underground grown taproot compared with those grown in light. PAR1 is a transcriptional cofactor with a negative role in shade avoidance syndrome regulation in Arabidopsis (Arabidopsis thaliana) through the dimerization with PHYTOCHROME-INTERACTING FACTORs (PIFs), allowing a moderate synthesis of carotenoids. Here, we show that overexpressing AtPAR1 in carrot increases carotenoid production in taproots grown underground as well as DcPSY1 expression. The high expression of AtPAR1 and DcPAR1 led us to hypothesize a functional role of DcPAR1 that was verified through in vivo binding to AtPIF7 and overexpression in Arabidopsis, where AtPSY expression and carotenoid accumulation increased together with a photomorphogenic phenotype. Finally, DcPAR1 antisense carrot lines presented a dramatic decrease in carotenoid levels and in relative expression of key carotenogenic genes as well as impaired taproot development. These results suggest that DcPAR1 is a key factor for secondary root development and carotenoid synthesis in carrot taproot grown underground.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237741PMC
http://dx.doi.org/10.1093/plphys/kiac097DOI Listing

Publication Analysis

Top Keywords

carotenoid synthesis
12
development carotenoid
8
phytochrome rapidly
8
rapidly regulated1
8
carrot taproot
8
taproot development
8
carotenogenic genes
8
carotenoid accumulation
8
grown underground
8
carrot
7

Similar Publications

Cerium (Ce), the most abundant of the rare Earth elements (REEs), is increasingly recognized as an environmental contaminant due to its growing applications in various industrial and agricultural sectors. This study investigates the physiological, biochemical, and molecular responses of Brassica rapa L. plants to varying concentrations of Ce exposure to elucidate its effects on plant growth, metabolism, and stress responses.

View Article and Find Full Text PDF

GA participates in FR light-induced internode elongation of cucumber by regulating the expression of genes/proteins related to aquaporins, expansins, cell wall biosynthesis, hormone metabolism, and signal transduction. This study investigated the effects of the interaction between far-red (FR) light and gibberellin (GA) on the internode elongation of cucumber (Cucumis sativus L. 'Zhongnong No.

View Article and Find Full Text PDF

Fungi are pivotal in transitioning to a bio-based, circular economy due to their ability to transform organic material into valuable products such as organic acids, enzymes, and drugs. Mucor circinelloides is a model organism for studying lipogenesis and is particularly promising for its metabolic capabilities in producing oils like TAGs and carotenoids, influenced by environmental factors such as nutrient availability. Notably, strains VI04473 and FRR5020 have been identified for their potential in producing single-cell oils and carotenoids, respectively.

View Article and Find Full Text PDF

The bioconversion of purple non-sulfur photosynthetic bacteria (PNSB) based on real food waste (FW) fermentation broth is crucial for FW resource recovery. This study enhanced the bioconversion efficiency of FW fermentation broth by PNSB through light intensity and photoperiod optimization, while elucidating the synthesis mechanisms of high-value cell inclusions. The results demonstrated that 4500 lx-L/D = 16/8 significantly enhanced R.

View Article and Find Full Text PDF

Structural insights into retinal-free microbial rhodopsins.

Structure

September 2025

HIT Center for Life Sciences, School of Life Science and Technology, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin 150001, China; Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin 150001, China. Electronic address:

Rhodopsins typically harness light energy through the covalently bound retinal cofactor. However, some rhodopsins have lost this ability during evolution. In this issue of Structure, Kovalev et al.

View Article and Find Full Text PDF