Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) results in progressive cognitive decline owing to the accumulation of amyloid plaques and hyperphosphorylated tau. MicroRNAs (miRNAs) have attracted attention as a putative diagnostic and therapeutic target for neurodegenerative diseases. However, existing meta-analyses on AD and its association with miRNAs have produced inconsistent results. The primary objective of this study is to evaluate the magnitude and consistency of differences in miRNA levels between AD patients, mild cognitive impairment (MCI) patients and healthy controls (HC). Articles investigating miRNA levels in blood, brain tissue, or cerebrospinal fluid (CSF) of AD and MCI patients versus HC were systematically searched in PubMed/Medline from inception to February 16, 2021. Fixed- and random-effects meta-analyses were complemented with the I statistic to measure the heterogeneity, assessment of publication bias, sensitivity subgroup analyses (AD severity, brain region, post-mortem versus ante-mortem specimen for CSF and type of analysis used to quantify miRNA) and functional enrichment pathway analysis. Of the 1512 miRNAs included in 61 articles, 425 meta-analyses were performed on 334 miRNAs. Fifty-six miRNAs were significantly upregulated (n = 40) or downregulated (n = 16) in AD versus HC and all five miRNAs were significantly upregulated in MCI versus HC. Functional enrichment analysis confirmed that pathways related to apoptosis, immune response and inflammation were statistically enriched with upregulated pathways in participants with AD relative to HC. This study confirms that miRNAs' expression is altered in AD and MCI compared to HC. These findings open new diagnostic and therapeutic perspectives for this disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-022-01476-zDOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
diagnostic therapeutic
8
mirna levels
8
mci patients
8
functional enrichment
8
mirnas upregulated
8
mirnas
6
differential expression
4
expression micrornas
4
micrornas alzheimer's
4

Similar Publications

The relationship between dietary biotin intake and cognitive function remains unclear. This study explores the association between biotin and dementia, and the mediating role of inflammation indicators. Dietary biotin intake was assessed via the 24-h recall questionnaire.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a leading cause of dementia, represents a critical unmet global medical need. While the precise mechanisms underlying AD pathogenesis remain elusive, increasing evidence underscores the pivotal role of neuroinflammation in driving cognitive impairment. N6-methyladenosine (m6A), an epigenetic modification regulating RNA metabolism, has been found to be dysregulated in AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) represents a growing global health burden, underscoring the urgent need for reliable diagnostic and prognostic biomarkers. Although several disease-modifying treatments have recently become available, their effects remain limited, as they primarily delay rather than halt disease progression. Thus, the early and accurate identification of individuals at elevated risk for conversion to AD dementia is crucial to maximize the effectiveness of these therapies and to facilitate timely intervention strategies.

View Article and Find Full Text PDF

Objectives: In 2017, the Chronic Condition Warehouse released a 30-condition Chronic Condition file (CC30), which fully replaced the prior 27-condition file (CC27) in 2022. CC30 shortened the look-back period for dementia identification from 3 to 2 years and raised the required outpatient/carrier claims from 1 to 2. This change may disproportionately affect individuals with limited access to health care.

View Article and Find Full Text PDF

Stable apelin-13 analogues promote cell proliferation, differentiation and protect inflammation induced cell death.

Mol Cell Neurosci

September 2025

Biomedical and Forensic Science, School of Human Sciences, University of Derby, Derby, DE22 1GB, United Kingdom; Life and Health Sciences, University of Roehampton, London, SW15 5PH, United Kingdom. Electronic address:

Emerging evidence indicates that apelin, an adipokine, plays a critical role in numerous biological functions and may hold potential for therapeutic applications; however, its efficacy is constrained by rapid plasma degradation. Thus, the search for novel apelin analogues with reduced susceptibility to plasma degradation is ongoing. We have previously shown novel modified apelin-13 analogues, providing exciting opportunities for potential therapeutic development against Alzheimer's disease.

View Article and Find Full Text PDF