Ferulic Acid Exerts Neuroprotective Effects via Autophagy Induction in and Cellular Models of Parkinson's Disease.

Oxid Med Cell Longev

Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University,

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Parkinson's disease (PD) is a complex neurological disorder characterized by motor and nonmotor features. Although some drugs have been developed for the therapy of PD in a clinical setting, they only alleviate the clinical symptoms and have yet to show a cure. In this study, by employing the model of PD, we found that ferulic acid (FA) significantly inhibited -synuclein accumulation and improved dyskinesia in NL5901 worms. Meanwhile, FA remarkably decreased the degeneration of dopaminergic (DA) neurons, improved the food-sensing behavior, and reduced the level of reactive oxygen species (ROS) in 6-OHDA-induced BZ555 worms. The mechanistic study discovered that FA could activate autophagy in , while the knockdown of 3 key autophagy-related genes significantly revoked the neuroprotective effects of FA in -synuclein- and 6-OHDA-induced models of PD, demonstrating that FA exerts an anti-PD effect via autophagy induction in . Furthermore, we found that FA could reduce 6-OHDA- or HO-induced cell death and apoptosis in PC-12 cells. Moreover, FA was able to induce autophagy in stable GFP-RFP-LC3 U87 cells and PC-12 cells, while bafilomycin A1 (Baf, an autophagy inhibitor) partly eliminated the protective effects of FA against 6-OHDA- and HO-induced cell death and ROS production in PC-12 cells, further confirming that FA exerts an anti-PD effect via autophagy induction in vitro. Collectively, our study provides novel insights for FA as a potent autophagy enhancer to effectively prevent neurodegenerative diseases such as PD in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8888115PMC
http://dx.doi.org/10.1155/2022/3723567DOI Listing

Publication Analysis

Top Keywords

autophagy induction
12
pc-12 cells
12
ferulic acid
8
neuroprotective effects
8
parkinson's disease
8
exerts anti-pd
8
anti-pd autophagy
8
6-ohda- ho-induced
8
ho-induced cell
8
cell death
8

Similar Publications

T-type calcium channels are pivotal in spermatogenesis. To evaluate the molecular mechanisms by which T-type calcium channels regulate spermatogenesis, we constructed animal and cellular models using T-type calcium channel inhibitor flunarizine (FNZ). Intraperitoneal administration of FNZ (30mg/kg) significantly impaired sperm motility, inhibited testicular germ cell proliferation, and disrupted sperm mitochondrial function in male mice.

View Article and Find Full Text PDF

This study aimed to investigate the therapeutic effects of Sini Decoction on a murine model of peripheral arterial disease (PAD) and to explore its potential mechanisms of action related to mitochondrial autophagy and M1 macrophage polarization. A total of 36 specific-pathogen-free Kunming mice were used to establish a PAD model and were randomly assigned into four groups: the experimental group (EG, administered Sini Decoction via gavage), the control group (CG, administered rapamycin via gavage), the model group (MG, administered 0.9% sodium chloride solution via gavage), and the normal group (NG, administered 0.

View Article and Find Full Text PDF

Bacoside A (BCA), a triterpenoid saponin isolated from Bacopa monnieri, exhibits diverse pharmacological properties, including neuroprotective, hepatoprotective, anti-stress, anti-inflammatory, and anti-ulcer effects. In the present study, BCA demonstrates pronounced anticancer activity against K562 chronic myelogenous leukemia (CML) cells by modulating autophagy-apoptosis dynamics. BCA induces dose- and time-dependent cytotoxicity in K562 cells while sparing normal human peripheral blood mononuclear cells (hPBMCs) and Vero cells, indicating therapeutic selectivity.

View Article and Find Full Text PDF

Pyrimethamine Inhibits Human Ovarian Cancer by Triggering Lethal Mitophagy via Activating the p38/JNK/ERK Pathway.

Oncol Res

September 2025

Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, China.

Objectives: Ovarian cancer, a leading cause of gynecological malignancy-related mortality, is characterized by limited therapeutic options and a poor prognosis. Although pyrimethamine has emerged as a promising candidate demonstrating efficacy in treating various tumors, the precise mechanisms of its antitumor effects remain obscure. This study was specifically designed to investigate the mode of action underlying the antitumor effects of pyrimethamine in preclinical settings.

View Article and Find Full Text PDF

Background: Hyperthermia (HT), while a cancer treatment approach, isn't always effective alone. Therefore, identifying hyperthermia enhancers is crucial. We demonstrated that Mito-TEMPO ([2-[(1-Hydroxy-2,2,6,6-tetramethylpiperidin-4-yl) amino]-2-oxoethyl]-triphenylphosphanium, MT) acts as a potent thermosensitizer, promoting cell death in human cervical cancer (HeLa) cells.

View Article and Find Full Text PDF