Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Abnormal DNA methylation contributes to the annoying tumorigenesis and the elevated expression of methylation-related methyltransferase (MTase) is associated with many diseases. Hence DNA MTase could serve as a promising biomarker for cancer-specific diagnosis as well as a potential therapeutic target. Herein, we developed an isothermal autocatalytic hybridization reaction (AHR) circuit for the sensitive detection of MTase and its inhibitors by integrating the catalytic hairpin assembly (CHA) converter with the hybridization chain reaction (HCR) amplifier. The initiator-mediated HCR amplifier could generate amplified fluorescent readout, as well as numerous newly activated triggers for motivating the CHA converter. The CHA converter is designed to expose the identical sequence of HCR initiators that reversely powered the HCR amplifier. Thus, the trace amount of target could produce exponentially amplified fluorescent readout by the autocatalytic feedback cycle between HCR and CHA systems. Then an auxiliary hairpin was introduced to mediate the assay of Dam MTase via the well-established AHR circuit. The Dam MTase-catalyzed methylation of auxiliary hairpin leads to its subsequent efficient cleavage by DpnI endonuclease, thus resulting in the release of HCR initiators to initiate the AHR circuit. The programmable nature of the auxiliary hairpin allows its easy adaption into other MTase assay by simply changing the recognition site. This proposed AHR circuit permits a sensitive, robust, and versatile analysis of MTase with the limit of detection (LOD) of 0.011 U/mL. Lastly, the AHR circuit could be utilized for MTase analysis in real complex samples and for evaluating the cell-cycle-dependent expression of MTase. This developed MTase-sensing strategy holds promising potential for biomedical analysis and clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c00037DOI Listing

Publication Analysis

Top Keywords

ahr circuit
20
cha converter
12
hcr amplifier
12
auxiliary hairpin
12
isothermal autocatalytic
8
autocatalytic hybridization
8
hybridization reaction
8
circuit sensitive
8
sensitive detection
8
mtase
8

Similar Publications

Cancer cells can be induced to dormancy initially by specific cancer therapies, but can be reactivated for subsequent relapse as therapy-resistant cancer cells. Although the treatment-induced dormancy-to-reactivation switch is an important process in tumour spread and recurrence, little is known about the underlying molecular mechanisms, particularly the metabolic underpinnings. In this study, we demonstrated that the tryptophan catabolism-related tryptophan 2,3-dioxygenase (TDO2) -kynurenine (Kyn) -aryl hydrocarbon receptor (AhR) signalling axis was responsible for both sustaining the survival of dormant prostate cancer cells induced by androgen deprivation therapy (ADT) and promoting the reactivation of dormant cells and their recurrent outgrowth, which facilitated the development of therapeutic resistance by allowing the dormancy-to-reactivation switch.

View Article and Find Full Text PDF

The Aryl Hydrocarbon Receptor in Neurotoxicity: An Intermediator Between Dioxins and Neurons in the Brain.

Toxics

July 2025

Department of Environmental Health, University of Fukui School of Medical Sciences, 23-3 Matsuoka-shimoaizuki, Eiheiji, Fukui 910-1193, Japan.

Industrial development has increased environmental dioxin concentrations, sparking concern about human health impacts. Examining dioxin neurotoxicity has highlighted associations with cognitive impairment and behavioral abnormality. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor; it is speculated that dioxin-induced AHR activation is pivotal for toxic effects.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a new nanopore sensor that uses a DNA walker and an autocatalytic reaction to detect DNA methyltransferases (MTases), important for understanding gene regulation and cancer.
  • The sensor operates by methylating and cleaving a hairpin DNA structure in the presence of Dam MTase, triggering a series of reactions that amplify the signal and produce numerous DNA nanowires.
  • This enhanced detection mechanism can identify extremely low levels of Dam MTase and can be adapted for M.SssI MTase, showcasing its potential in advanced biosensing applications.
View Article and Find Full Text PDF

The oxygen-sensing pathway is a crucial regulatory circuit that defines cellular conditions and is extensively exploited in cancer development. Pathogenic mutations in the von Hippel-Lindau (VHL) tumour suppressor impair its role as a master regulator of hypoxia-inducible factors (HIFs), leading to constitutive HIF activation and uncontrolled angiogenesis, increasing the risk of developing clear cell renal cell carcinoma (ccRCC). HIF hyperactivation can sequester HIF-1β, preventing the aryl hydrocarbon receptor (AHR) from correctly activating gene expression in response to endogenous and exogenous ligands such as TCDD (dioxins).

View Article and Find Full Text PDF

Mitochondrial perturbation in the intestine causes microbiota-dependent injury and gene signatures discriminative of inflammatory disease.

Cell Host Microbe

August 2024

Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany. Electronic address:

Mitochondrial dysfunction is associated with inflammatory bowel diseases (IBDs). To understand how microbial-metabolic circuits contribute to intestinal injury, we disrupt mitochondrial function in the epithelium by deleting the mitochondrial chaperone, heat shock protein 60 (Hsp60). This metabolic perturbation causes self-resolving tissue injury.

View Article and Find Full Text PDF