98%
921
2 minutes
20
Abnormal DNA methylation contributes to the annoying tumorigenesis and the elevated expression of methylation-related methyltransferase (MTase) is associated with many diseases. Hence DNA MTase could serve as a promising biomarker for cancer-specific diagnosis as well as a potential therapeutic target. Herein, we developed an isothermal autocatalytic hybridization reaction (AHR) circuit for the sensitive detection of MTase and its inhibitors by integrating the catalytic hairpin assembly (CHA) converter with the hybridization chain reaction (HCR) amplifier. The initiator-mediated HCR amplifier could generate amplified fluorescent readout, as well as numerous newly activated triggers for motivating the CHA converter. The CHA converter is designed to expose the identical sequence of HCR initiators that reversely powered the HCR amplifier. Thus, the trace amount of target could produce exponentially amplified fluorescent readout by the autocatalytic feedback cycle between HCR and CHA systems. Then an auxiliary hairpin was introduced to mediate the assay of Dam MTase via the well-established AHR circuit. The Dam MTase-catalyzed methylation of auxiliary hairpin leads to its subsequent efficient cleavage by DpnI endonuclease, thus resulting in the release of HCR initiators to initiate the AHR circuit. The programmable nature of the auxiliary hairpin allows its easy adaption into other MTase assay by simply changing the recognition site. This proposed AHR circuit permits a sensitive, robust, and versatile analysis of MTase with the limit of detection (LOD) of 0.011 U/mL. Lastly, the AHR circuit could be utilized for MTase analysis in real complex samples and for evaluating the cell-cycle-dependent expression of MTase. This developed MTase-sensing strategy holds promising potential for biomedical analysis and clinical diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.2c00037 | DOI Listing |
Cell Discov
August 2025
Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
Cancer cells can be induced to dormancy initially by specific cancer therapies, but can be reactivated for subsequent relapse as therapy-resistant cancer cells. Although the treatment-induced dormancy-to-reactivation switch is an important process in tumour spread and recurrence, little is known about the underlying molecular mechanisms, particularly the metabolic underpinnings. In this study, we demonstrated that the tryptophan catabolism-related tryptophan 2,3-dioxygenase (TDO2) -kynurenine (Kyn) -aryl hydrocarbon receptor (AhR) signalling axis was responsible for both sustaining the survival of dormant prostate cancer cells induced by androgen deprivation therapy (ADT) and promoting the reactivation of dormant cells and their recurrent outgrowth, which facilitated the development of therapeutic resistance by allowing the dormancy-to-reactivation switch.
View Article and Find Full Text PDFToxics
July 2025
Department of Environmental Health, University of Fukui School of Medical Sciences, 23-3 Matsuoka-shimoaizuki, Eiheiji, Fukui 910-1193, Japan.
Industrial development has increased environmental dioxin concentrations, sparking concern about human health impacts. Examining dioxin neurotoxicity has highlighted associations with cognitive impairment and behavioral abnormality. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor; it is speculated that dioxin-induced AHR activation is pivotal for toxic effects.
View Article and Find Full Text PDFAnal Chem
October 2024
Department of Hepatobiliary, Taizhou Central Hospital, Taizhou University, Taizhou, Zhejiang 318000, China.
Genes (Basel)
September 2024
Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
The oxygen-sensing pathway is a crucial regulatory circuit that defines cellular conditions and is extensively exploited in cancer development. Pathogenic mutations in the von Hippel-Lindau (VHL) tumour suppressor impair its role as a master regulator of hypoxia-inducible factors (HIFs), leading to constitutive HIF activation and uncontrolled angiogenesis, increasing the risk of developing clear cell renal cell carcinoma (ccRCC). HIF hyperactivation can sequester HIF-1β, preventing the aryl hydrocarbon receptor (AHR) from correctly activating gene expression in response to endogenous and exogenous ligands such as TCDD (dioxins).
View Article and Find Full Text PDFCell Host Microbe
August 2024
Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany. Electronic address:
Mitochondrial dysfunction is associated with inflammatory bowel diseases (IBDs). To understand how microbial-metabolic circuits contribute to intestinal injury, we disrupt mitochondrial function in the epithelium by deleting the mitochondrial chaperone, heat shock protein 60 (Hsp60). This metabolic perturbation causes self-resolving tissue injury.
View Article and Find Full Text PDF