Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An economical corncob biochar-based magnetic iron-copper bimetallic nanomaterial (marked as MBC) was successfully synthesized and optimized through a co-precipitation and pyrolysis method. It was successfully used to activate HO to remove ciprofloxacin (CIP) from aqueous solutions. This material had high catalytic activity and structural stability. Additionally, it had good magnetic properties, which can be easily separated from solutions. In MBC/HO, the removal efficiency of CIP was 93.6% within 360 min at optimal reaction conditions. The conversion of total organic carbon (TOC) reached 51.0% under the same situation. The desorption experiments concluded that adsorption and catalytic oxidation accounted for 34% and 66% on the removal efficiency of CIP, respectively. The influences of several reaction parameters were systematically evaluated on the catalytic activity of MBC. OH was proved to play a significant role in the removal of CIP through electron paramagnetic resonance (EPR) analysis and a free radical quenching experiment. Additionally, such outstanding removal efficiency can be attributed to the excellent electronic conductivity of MBC, as well as the redox cycle reaction between iron and copper ions, which achieved the continuous generation of hydroxyl radicals. Integrating HPLC-MS, ion chromatography and density functional theory (DFT) calculation results, and possible degradation of the pathways of the removal of CIP were also thoroughly discussed. These results provided a theoretical basis and technical support for the removal of CIP in water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880508PMC
http://dx.doi.org/10.3390/nano12040579DOI Listing

Publication Analysis

Top Keywords

removal efficiency
12
removal cip
12
corncob biochar-based
8
biochar-based magnetic
8
magnetic iron-copper
8
iron-copper bimetallic
8
bimetallic nanomaterial
8
aqueous solutions
8
catalytic activity
8
efficiency cip
8

Similar Publications

Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.

View Article and Find Full Text PDF

This study quantitatively evaluated the adsorption performance of natural bentonite for removing three dye classes-cationic (Basic dye: BEZACRYL RED GRL), anionic (Reactive dye: AVITERA LIGHT RED SE), and non-ionic (Disperse dye: BEMACRON BLUE HP3R) from synthetic textile wastewater. Batch adsorption experiments were conducted under varying conditions of contact time (15-90 min), adsorbent dosage (20-60 g L⁻), pH (4 and 12), and temperature (25-100 °C), with dye concentrations quantified by UV-Vis spectroscopy. At a contact time of 30 min and room temperature (25 °C), maximum removal efficiencies reached 99.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

Lignin-intercalated WS with synergistic adsorption for efficiency lead removal.

Bioresour Technol

September 2025

School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Zibo Engineering Research Center for Bio-based New Materials, Zibo 255000, China. Electronic address:

Tungsten disulfide (WS), a two-dimensional adsorbent material, has garnered great attention in removing lead ions (Pb) from water due to their extensive exposed adsorption sites. However, WS nanosheets inevitably agglomerated and stacked during the preparation and adsorption process, leading to reduced adsorption efficiency. Current method of enhancing WS dispersion is mainly blending with synthetic polymers, but these synthetic polymers themselves do not possess adsorption properties, resulting adsorption effect enhancement poorly.

View Article and Find Full Text PDF

Hematite-facilitated anaerobic oxidation of organics: Novel strategy to alleviate bioclogging in constructed wetlands.

Bioresour Technol

September 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China. Electronic address:

Bioclogging from organic accumulation significantly limits efficiency and longevity of constructed wetlands (CWs). In this study, hematite was introduced to enhance the oxidation of organics by dissimilatory iron reduction (DIR). Compared to gravel CWs (G-CWs), hematite CWs (H-CWs) enhanced the removal of COD, ammonium, and phosphate by 12 %, 46 %, and 72 %, while reducing CH and NO emissions by 69 % and 36 %.

View Article and Find Full Text PDF