Lignin-intercalated WS with synergistic adsorption for efficiency lead removal.

Bioresour Technol

School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Zibo Engineering Research Center for Bio-based New Materials, Zibo 255000, China. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tungsten disulfide (WS), a two-dimensional adsorbent material, has garnered great attention in removing lead ions (Pb) from water due to their extensive exposed adsorption sites. However, WS nanosheets inevitably agglomerated and stacked during the preparation and adsorption process, leading to reduced adsorption efficiency. Current method of enhancing WS dispersion is mainly blending with synthetic polymers, but these synthetic polymers themselves do not possess adsorption properties, resulting adsorption effect enhancement poorly. Here, lignin extracted from walnut shells (WS) was intercalated into bulk WS to prepare highly dispersible Lignin/WS composites with synergistic adsorption effects. The spatial resistance and electrostatic repulsion of the intercalated lignin effectively exfoliated bulk WS and stabilized their dispersion. The synergistic adsorption arises from lignin's oxygen-containing groups and WS nanosheets' sulfur-rich surface, which significantly enhanced Pb removal (∼66.9 mg/g). This value surpassed pure lignin and bulk WS by 1.7 and 25.0 times, respectively. Adsorption follows pseudo-second-order kinetic and Freundlich isotherm model, indicating that the adsorption of Pb by the Lignin/WS composite belongs to multi molecular layer chemical adsorption. This work provides a novel strategy for lignin-based adsorbents in water remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2025.133284DOI Listing

Publication Analysis

Top Keywords

synergistic adsorption
12
adsorption
11
adsorption efficiency
8
synthetic polymers
8
lignin-intercalated synergistic
4
efficiency lead
4
lead removal
4
removal tungsten
4
tungsten disulfide
4
disulfide two-dimensional
4

Similar Publications

With the acceleration of global industrialization, a large amount of polluted wastewater is discharged indiscriminately, which both pollutes the environment and threatens human health. In this study, by constructing a binary system of unsaturated polyester resin/carboxychitosan, and improving the inherent defects of carboxychitosan aerogel, we successfully prepared aerogels with high porosity, low density, and laminar porous structure for water remediation by using a combination of the sol-gel method and directional freezing technology. Thanks to the synergistic effect of surface wettability and special pore structure, the aerogel not only adsorbs and separates MB and Pb(II) efficiently with a separation efficiency of more than 99 %, but also has a separation efficiency of 99.

View Article and Find Full Text PDF

Galvanizing waste-derived Zn-induced defective Fe-based metal-organic frameworks as superior adsorbent for enhanced antibiotic removal.

Environ Res

September 2025

College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial University Key Laboratory of Poll

The derivation of defect-engineered metal-organic frameworks (MOFs) from industrial waste simultaneously mitigates environmental pollution, reduces MOF synthesis costs, and enhances adsorption performance. Herein, this study demonstrates a sustainable strategy for the resourceful synthesis of iron-based MOF s-MIL-100(Fe) using galvanizing pickling waste liquor (80.5 wt.

View Article and Find Full Text PDF

Simultaneous removal of NO and propane by solid electrolyte cells with LaPrBaNiO bifunctional electrodes.

J Hazard Mater

September 2025

School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Environmental Chemistry and Low Carbon Technology, Zhengzhou 450001, China. Electronic address:

Solid electrolyte cell is a novel gas purification approach, which has unique superiority in simultaneous nitrogen oxides (NO) and volatile organic compounds (VOCs) removal. The development of effective electrode materials and the comprehensive understanding of reaction mechanisms are essential to advancing this technology. In this study, LaPrBaNiO (x = 0, 0.

View Article and Find Full Text PDF

Interface-engineered CoN-WN heterostructure catalyst with synergistic dual-site hydrogen bonding and electronic modulation for efficient 5-hydroxymethylfurfural electrooxidation.

J Colloid Interface Sci

September 2025

Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China. Electronic address:

The 5-hydroxymethylfurfural electrooxidation reaction (HMFOR) stands out due to the value-added production and mild conditions. However, its catalytic efficiency is hampered by sluggish kinetics. Herein, with a focus on optimizing the adsorption and activation of reaction molecules, a CoN-WN heterostructure catalyst is constructed for efficient HMFOR.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) glycolysis presents an effective solution to address plastic pollution while promoting the utilization of renewable resources. It is highly important to gain in-depth insights into the identification of the well-defined active sites and the structure-activity relationships in PET glycolysis. Herein, PW@UiO-67 with different exposed crystal facets, i.

View Article and Find Full Text PDF