Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unspecific peroxygenases (UPOs, EC 1.11.2.1) are fungal biocatalysts that have attracted considerable interest for application in chemical syntheses due to their ability to selectively incorporate peroxide-oxygen into non-activated hydrocarbons. However, the number of available and characterized UPOs is limited, as it is difficult to produce these enzymes in homologous or hetero-logous expression systems. In the present study, we introduce a third approach for the expression of UPOs: cell-free protein synthesis using lysates from filamentous fungi. Biomass of and , respectively, was lysed by French press and tested for translational activity with a luciferase reporter enzyme. The gene from (encoding the main peroxygenase, UPO) was cell-free expressed with both lysates, reaching activities of up to 105 U L within 24 h (measured with veratryl alcohol as substrate). The cell-free expressed enzyme (cfUPO) was successfully tested in a substrate screening that included prototypical UPO substrates, as well as several pharmaceuticals. The determined activities and catalytic performance were comparable to that of the wild-type enzyme (wtUPO). The results presented here suggest that cell-free expression could become a valuable tool to gain easier access to the immense pool of putative UPO genes and to expand the spectrum of these sought-after biocatalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8868270PMC
http://dx.doi.org/10.3390/antiox11020284DOI Listing

Publication Analysis

Top Keywords

cell-free protein
8
protein synthesis
8
unspecific peroxygenases
8
cell-free expressed
8
cell-free
5
synthesis fungal
4
fungal lysates
4
lysates rapid
4
rapid production
4
production unspecific
4

Similar Publications

Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.

View Article and Find Full Text PDF

Fragment dispersity index analysis of cfDNA fragments reveals chromatin accessibility and enables early cancer detection.

Cell Rep Methods

July 2025

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China; Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China; College of Informatics, Huazhong Agricult

We introduce a cell-free DNA (cfDNA) fragmentation pattern: the fragment dispersity index (FDI), which integrates information on the distribution of cfDNA fragment ends with the variation in fragment coverage, enabling precise characterization of chromatin accessibility in specific regions. The FDI shows a strong correlation with chromatin accessibility and gene expression, and regions with high FDI are enriched in active regulatory elements. Using whole-genome cfDNA data from five datasets, we developed and validated the FDI-oncology model, which demonstrates robust performance in early cancer diagnosis, subtyping, and prognosis.

View Article and Find Full Text PDF

Refinement of OnePot PURE and Crude Ribosome Production for Reproducible Cell-free Protein Synthesis.

J Vis Exp

August 2025

Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh;

Recent advances have enabled the Protein synthesis Using Recombinant Elements (PURE) cell-free system to be produced in individual laboratories economically and with reduced labor burden. However, the preparation of the 36 protein components and ribosome, which make up PURE, is still a complex undertaking, with much scope for variation and error. We present a detailed and updated procedure to manufacture PURE based on the recently published OnePot protocol, which involves regulating a number of key steps, in particular, the inoculation of cultures using optical density (OD)-normalized glycerol stocks, careful monitoring of cell growth, and controlling final glycerol concentrations.

View Article and Find Full Text PDF

Objective: Hypertrophic scars (HS) are a fibrotic proliferative disorder that results from an abnormal wound healing process, presenting significant challenges for clinical intervention. The primary characteristics of HS include excessive collagen deposition and angiogenesis. In recent years, the study of mesenchymal stem cells (MSCs) and their derived exosomes has emerged as a prominent area of research within the academic community.

View Article and Find Full Text PDF

In this work, we present a streamlined one-pot cloning and protein expression platform that integrates mutagenesis, plasmid assembly, and functional protein testing in a single reaction. By combining Golden Gate cloning with cell-free transcription-translation, we demonstrate efficient generation and screening of genetic variants without the need for intermediate purification or bacterial amplification. Using fluorescent proteins, luciferase enzymes, antibiotic-converting enzymes, and the violacein biosynthetic pathway, we validate the versatility of this approach for single-and multi-site mutagenesis, combinatorial variant libraries, metabolic pathway programming, and whole-plasmid assembly.

View Article and Find Full Text PDF