Clin Hemorheol Microcirc
April 2025
Unspecific peroxygenases (UPO, EC 1.11.2.
View Article and Find Full Text PDFThere is an enormous potential for cell-free protein synthesis (CFPS) systems based on filamentous fungi in view of their simple, fast and mostly inexpensive cultivation with high biomass space-time yields and in view of their catalytic capacity. In 12 of the 22 different filamentous fungi examined, in vitro translation of at least one of the two reporter proteins GFP and firefly luciferase was detected. The lysates showing translation of a reporter protein usually were able to synthesize a functional cell-free expressed unspecific peroxygenase (UPO) from the basidiomycete Cyclocybe (Agrocybe) aegerita.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2023
The hydroxylation of fatty acids is an appealing reaction in synthetic chemistry, although the lack of selective catalysts hampers its industrial implementation. In this study, we have engineered a highly regioselective fungal peroxygenase for the ω-1 hydroxylation of fatty acids with quenched stepwise over-oxidation. One single mutation near the Phe catalytic tripod narrowed the heme cavity, promoting a dramatic shift toward subterminal hydroxylation with a drop in the over-oxidation activity.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2022
Unspecific peroxygenases (UPOs, EC 1.11.2.
View Article and Find Full Text PDFLipid mediators, such as epoxidized or hydroxylated eicosanoids (EETs, HETEs) of arachidonic acid (AA), are important signaling molecules and play diverse roles at different physiological and pathophysiological levels. The EETs and HETEs formed by the cytochrome P450 enzymes are still not fully explored, but show interesting anti-inflammatory properties, which make them attractive as potential therapeutic target or even as therapeutic agents. Conventional methods of chemical synthesis require several steps and complex separation techniques and lead only to low yields.
View Article and Find Full Text PDFThe ascomycete Truncatella angustata has a worldwide distribution. Commonly, it is associated with plants as an endophyte, pathogen, or saprotroph. The genome assembly comprises 44.
View Article and Find Full Text PDFAntioxidants (Basel)
March 2022
Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2022
Unspecific peroxygenases (UPOs, EC 1.11.2.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2022
Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y receptor and thereby prevent atherothrombotic events.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2021
Fungal unspecific peroxygenases (UPOs) are emergent biocatalysts that perform highly selective C-H oxyfunctionalizations of organic compounds, yet their heterologous production at high levels is required for their practical use in synthetic chemistry. Here, we achieved functional expression of two new unusual acidic peroxygenases from () (UPO) in yeasts and their production at a large scale in a bioreactor. Our strategy was based on adopting secretion mutations from an Agrocybe aegerita UPO mutant, the PaDa-I variant, designed by directed evolution for functional expression in yeast, which belongs to the same phylogenetic family as UPOs, long-type UPOs, and shares 65% sequence identity.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2021
Epoxides of vegetable oils and free and methylated fatty acids are of interest for several industrial applications. In the present work, refined rapeseed, sunflower, soybean, and linseed oils, with very different profiles of mono- and poly-unsaturated fatty acids, were saponified and transesterified, and the products treated with wild unspecific peroxygenases (UPOs, EC 1.11.
View Article and Find Full Text PDFSinglet oxygen is a reactive oxygen species undesired in living cells but a rare and valuable reagent in chemical synthesis. We present a fluorescence spectroscopic analysis of the singlet-oxygen formation activity of commercial peroxidases and novel peroxygenases. Singlet-oxygen sensor green (SOSG) is used as fluorogenic singlet oxygen trap.
View Article and Find Full Text PDFCyclophosphamide (CPA) represents a widely used anti-cancer prodrug that is converted by liver cytochrome P450 (CYP) enzymes into the primary metabolite 4-hydroxycyclophosphamide (4-OH-CPA), followed by non-enzymatic generation of the bioactive metabolites phosphoramide mustard and acrolein. The use of human drug metabolites as authentic standards to evaluate their toxicity is essential for drug development. However, the chemical synthesis of 4-OH-CPA is complex and leads to only low yields and undesired side products.
View Article and Find Full Text PDFApocarotenoids are among the most highly valued fragrance constituents, being also appreciated as synthetic building blocks. This work shows the ability of unspecific peroxygenases (UPOs, EC1.11.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2016
A new heme-thiolate peroxidase catalyzes the hydroxylation of n-alkanes at the terminal position-a challenging reaction in organic chemistry-with H2 O2 as the only cosubstrate. Besides the primary product, 1-dodecanol, the conversion of dodecane yielded dodecanoic, 12-hydroxydodecanoic, and 1,12-dodecanedioic acids, as identified by GC-MS. Dodecanal could be detected only in trace amounts, and 1,12-dodecanediol was not observed, thus suggesting that dodecanoic acid is the branch point between mono- and diterminal hydroxylation.
View Article and Find Full Text PDFBioorg Med Chem
August 2015
Unspecific peroxygenases (UPOs, EC 1.11.2.
View Article and Find Full Text PDF