Publications by authors named "Yuriko Yoshimura"

The heterochromatin protein HP1α consists of an N-terminal disordered tail (N-tail), chromodomain (CD), hinge region (HR), and C-terminal chromo shadow domain (CSD). While CD binds to the lysine9-trimethylated histone H3 (H3K9me3) tail in nucleosomes, CSD forms a dimer bridging two nucleosomes with H3K9me3. Phosphorylation of serine residues in the N-tail enhances both H3K9me3 binding and liquid-liquid phase separation (LLPS) by HP1α.

View Article and Find Full Text PDF

The heterochromatin protein 1 (HP1) family recognizes lysine 9-methylated histone H3 (H3K9me) and recruits other transacting factors to establish higher order chromatin structures. In the fission yeast Schizosaccharomyces pombe (S. pombe), two HP1 family proteins, Swi6 and Chp2, play distinct roles in recruiting transacting factors: Swi6 primarily recruits Epe1, a Jumonji C domain-containing protein involved in histone H3K9 demethylation, whereas Chp2 recruits Mit1, a component of the Snf2/Hdac Repressive Complex.

View Article and Find Full Text PDF
Article Synopsis
  • The pairing of homologous chromosomes during meiosis is essential for successful sexual reproduction, with the sme2 RNA playing a crucial role in facilitating this pairing through phase separation.
  • Various RNA-binding proteins aggregate at the sme2 locus, forming complexes necessary for robust homologous chromosome pairing during meiosis.
  • Experiments show that specific RNA species within these protein condensates influence their properties, impacting the physical characteristics that support effective chromosome pairing.
View Article and Find Full Text PDF

Heterochromatin protein 1 (HP1) is an evolutionarily conserved protein that plays a critical role in heterochromatin assembly. HP1 proteins share a basic structure consisting of an N-terminal chromodomain (CD) and a C-terminal chromoshadow domain (CSD) linked by a disordered hinge region. The CD recognizes histone H3 lysine 9 methylation, a hallmark of heterochromatin, while the CSD forms a dimer to recruit other chromosomal proteins.

View Article and Find Full Text PDF

The Polycomb repressive complex 2 (PRC2) is a multicomponent histone H3K27 methyltransferase complex, best known for silencing the genes during embryonic development. The Polycomb-like proteins PHF1, MTF2, and PHF19 are critical components of PRC2 by stimulating its catalytic activity in embryonic stem cells. The Tudor domains of PHF1/19 have been previously shown to be readers of H3K36me3 in vitro.

View Article and Find Full Text PDF

The methylation of histone H3 at lysine 9 (H3K9me), performed by the methyltransferase Clr4/SUV39H, is a key event in heterochromatin assembly. In fission yeast, Clr4, together with the ubiquitin E3 ligase Cul4, forms the Clr4 methyltransferase complex (CLRC), whose physiological targets and biological role are currently unclear. Here, we show that CLRC-dependent H3 ubiquitylation regulates Clr4's methyltransferase activity.

View Article and Find Full Text PDF

Heterochromatin protein 1 (HP1) is an evolutionarily conserved chromosomal protein that plays a crucial role in heterochromatin-mediated gene silencing. We previously showed that mammalian HP1α is constitutively phosphorylated at its N-terminal serine residues by casein kinase II (CK2), and that this phosphorylation enhances HP1α's binding specificity for nucleosomes containing lysine 9-methylated histone H3 (H3K9me). Although the presence of additional HP1α phosphorylation during mitosis was reported more than a decade ago, its biological significance remains largely elusive.

View Article and Find Full Text PDF