Article Synopsis

  • Research indicates the gut microbiome plays a significant role in cognitive function, especially the types of viruses present.
  • A study found that higher levels of certain bacteriophages (Caudovirales and Siphoviridae) are associated with better executive functioning and verbal memory, while higher levels of Microviridae correlate with cognitive impairment.
  • Experiments involving microbiota transplantation and dietary supplementation with specific bacteriophages showed improved memory behaviors and brain gene activity in both mice and fruit flies, suggesting these viruses may influence brain function.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Growing evidence implicates the gut microbiome in cognition. Viruses, the most abundant life entities on the planet, are a commonly overlooked component of the gut virome, dominated by the Caudovirales and Microviridae bacteriophages. Here, we show in a discovery (n = 114) and a validation cohort (n = 942) that subjects with increased Caudovirales and Siphoviridae levels in the gut microbiome had better performance in executive processes and verbal memory. Conversely, increased Microviridae levels were linked to a greater impairment in executive abilities. Microbiota transplantation from human donors with increased specific Caudovirales (>90% from the Siphoviridae family) levels led to increased scores in the novel object recognition test in mice and up-regulated memory-promoting immediate early genes in the prefrontal cortex. Supplementation of the Drosophila diet with the 936 group of lactococcal Siphoviridae bacteriophages resulted in increased memory scores and upregulation of memory-involved brain genes. Thus, bacteriophages warrant consideration as novel actors in the microbiome-brain axis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2022.01.013DOI Listing

Publication Analysis

Top Keywords

gut microbiome
8
increased
5
caudovirales
4
caudovirales bacteriophages
4
bacteriophages associated
4
associated improved
4
improved executive
4
executive function
4
function memory
4
memory flies
4

Similar Publications

Background: Several clinical studies have demonstrated that Helicobacter pylori (Hp) infection may exacerbate the progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD); however, the underlying mechanisms remain unclear. This study aims to investigate the characterization of the gastric microbiome and metabolome in relation to the progression of MASLD induced by Hp infection.

Methods: We established a high-fat diet (HFD) obese mouse model, both with and without Hp infection, to compare alterations in serum and liver metabolic phenotypes.

View Article and Find Full Text PDF

This review article describes recent research advances in the relationship between spinal cord injury (SCI) and the gut microbiota and each other's inflammatory response. SCI is a serious neurological disease that directly damages physiological function. Recent studies have shown that SCI significantly affected the composition and function of the gut microbiota, and even caused intestinal inflammation.

View Article and Find Full Text PDF

Varroa destructor infestation amplifies imidacloprid vulnerability in Apis mellifera.

Pestic Biochem Physiol

November 2025

Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. Electronic address:

Honey bee health is affected by a variety of environmental factors, with Varroa destructor parasitism and pesticide exposure being important factors contributing to colony decline. In this study, we assessed the effects of V. destructor infestation in combination with imidacloprid exposure on honey bees.

View Article and Find Full Text PDF

Efficient degradation mechanism of fomesafen by earthworms and gut degrading bacteria synthetic community.

Pestic Biochem Physiol

November 2025

College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China. Electronic address:

Fomesafen (FSA), a diphenyl ether herbicide, causes toxicity to non-target organisms and subsequent crops. Vermi-remediation is advocated as an effective remediation method, but there has been no research on the isolation and mechanism of FSA-degradation strains from earthworm gut. In this study, three ecotypes of earthworms- Eisenia foetida (epigeic), Metaphire guillelmi (anecic), and Aporrectodea caliginosa (endogenic), were used to investigate the degradation mechanism of FSA in soil-plant-earthworm systems for the first time.

View Article and Find Full Text PDF

Vitamin D has been proposed to attenuate chemotherapy-induced gastrointestinal mucositis (GM). In the intestine, local catabolism of active vitamin D [1,25-dihydroxyvitamin D₃] is mediated by the enzyme Cyp24a1. This study assessed whether deletion of Cyp24a1 specifically in intestinal epithelial cells can protect against 5-fluorouracil (5-FU)-induced intestinal injury and microbiome disruption in mice.

View Article and Find Full Text PDF