98%
921
2 minutes
20
Vitamin D has been proposed to attenuate chemotherapy-induced gastrointestinal mucositis (GM). In the intestine, local catabolism of active vitamin D [1,25-dihydroxyvitamin D₃] is mediated by the enzyme Cyp24a1. This study assessed whether deletion of Cyp24a1 specifically in intestinal epithelial cells can protect against 5-fluorouracil (5-FU)-induced intestinal injury and microbiome disruption in mice. Using the Cre-loxP system, Cyp24a1 was selectively ablated in the intestinal epithelium (IEC-KO mice). Male IEC-KO and Cyp24a1^fl/fl^ littermate control mice received a single intraperitoneal injection of 5-FU (450mg/kg) or saline and were euthanised 48hours later. In control mice, 5-FU markedly reduced duodenal villous height and crypt area (p < 0.01), whereas IEC-KO mice retained intestinal architecture. Proliferation, measured by Ki-67 immunostaining, was preserved in both the small and large intestine of IEC-KO mice following 5-FU treatment (p < 0.05). Notably, colonic Tlr4 mRNA was significantly upregulated in IEC-KO mice (p < 0.001), with no corresponding increase in inflammatory cytokines. 16S rRNA sequencing revealed no change in overall microbial diversity; however, there were notable differences in the relative abundance of key taxa, such as Bifidobacteriaceae and Alistipes. These findings suggest that intestinal Cyp24a1 contributes to susceptibility to chemotherapy-induced intestinal injury and microbial dysbiosis, and that its deletion enhances epithelial regeneration, potentially via innate immune pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2025.106857 | DOI Listing |
J Steroid Biochem Mol Biol
September 2025
Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia. Electronic address:
Vitamin D has been proposed to attenuate chemotherapy-induced gastrointestinal mucositis (GM). In the intestine, local catabolism of active vitamin D [1,25-dihydroxyvitamin D₃] is mediated by the enzyme Cyp24a1. This study assessed whether deletion of Cyp24a1 specifically in intestinal epithelial cells can protect against 5-fluorouracil (5-FU)-induced intestinal injury and microbiome disruption in mice.
View Article and Find Full Text PDFInflamm Res
June 2025
Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China.
Pyroptosis contributes to activation of the innate immunity system and defense against infection by pathogens. Endotoxemia is the host inflammatory storm occurring in response to severe and life-threatening infections caused by endotoxin from gram-negative bacilli. However, whether pyroptosis is involved in intestinal epithelial cell (IEC) or intestinal stem cell (ISC) injury induced by endotoxemia remains unclear.
View Article and Find Full Text PDFGut
April 2025
Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
Background: Inflammatory bowel diseases (IBDs) are characterised by dysbiosis and a leaky gut. The NADPH oxidase dual oxidase 2 (DUOX2) is upregulated in patients with IBD, yet its role in driving the disease remains unclear.
Objective: We interrogated the functional consequences of epithelial DUOX2 activity for the host and microbiome.
J Steroid Biochem Mol Biol
June 2025
Department of Surgery, Queen's University, Kingston, Canada.
Expression of 25 hydroxyvitamin D 24 hydroxylase from the Cyp24a1 gene mediates 1,25 dihydroxyvitamin D (1,25(OH)D) catabolism but gaps exist in our understanding of this enzyme's physiologic importance. Here, we used tamoxifen to induce Cyp24a1 gene knockout (KO) in adult mice (50 mg Tamoxifen /g BW, ip, 5 d, at 11 wks of age) or intestinal-epithelial-cell-specific knock-out mice (IEC KO) to evaluate the role of CYP24A1 in adult mice and the contribution of the intestine to vitamin D (Vit D) metabolism. At 12-wks mice were euthanized and serum was analyzed for Vit D metabolites by LC MS/MS while duodenal (Dd) and kidney (Kd) mRNA levels were quantified using qPCR.
View Article and Find Full Text PDFNat Commun
February 2025
Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China.
Dysfunctional NF-κB signaling is critically involved in inflammatory bowel disease (IBD). We investigated the mechanism by which RIPK1 and TRADD, two key mediators of NF-κB signaling, in mediating intestinal pathology using TAK1 IEC deficient model. We show that phosphorylation of TRADD by TAK1 modulates RIPK1-dependent apoptosis.
View Article and Find Full Text PDF