Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The biomass-derived alcohol oxidation reaction (BDAOR) holds great promise for sustainable production of chemicals. However, selective electrooxidation of alcohols to value-added aldehyde compounds is still challenging. Herein, we report the electrocatalytic BDAORs to selectively produce aldehydes using single-atom ruthenium on nickel oxide (Ru -NiO) as a catalyst in the neutral medium. For electrooxidation of 5-hydroxymethylfurfural (HMF), Ru -NiO exhibits a low potential of 1.283 V at 10 mA cm , and an optimal 2,5-diformylfuran (DFF) selectivity of 90 %. Experimental studies reveal that the neutral electrolyte plays a critical role in achieving a high aldehyde selectivity, and the single-atom Ru boosts HMF oxidation in the neutral medium by promoting water dissociation to afford OH*. Furthermore, Ru -NiO can be extended to selective electrooxidation of a series of biomass-derived alcohols to corresponding aldehydes, which are conventionally difficult to obtain in the alkaline medium.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202200211DOI Listing

Publication Analysis

Top Keywords

selective electrooxidation
12
neutral medium
12
biomass-derived alcohols
8
water dissociation
8
electrooxidation biomass-derived
4
alcohols aldehydes
4
neutral
4
aldehydes neutral
4
medium
4
medium promoted
4

Similar Publications

PdMoW trimetallene facilitates the electrooxidation of ethanol in alkaline electrolyte with high efficiency and C2 selectivity.

J Colloid Interface Sci

September 2025

Shanxi Center of Technology Innovation for Advanced Power Battery Material, School of Chemistry and Chemical Engineering, Shanxi Normal University, Taiyuan 030032, China. Electronic address:

Against the backdrop of global carbon neutrality target driving the transformation of energy structure, alcohol fuel cells (AFCs) show great application potential; However, the sluggish kinetics of their anodic alcohol oxidation reaction hinders the commercialization of AFCs. Metallene is a novel 2D material with potential application prospect in the field of electrocatalysis. In this paper, PdMoW trimetallene has been successfully produced by a one-pot wet-chemical method, which displays a unique two-dimensional curved ultrathin graphene structure.

View Article and Find Full Text PDF

Synthesis of Polymer Nanohybrids for Glycerol Sensing, Fluorometric Viscosity Detection, and Metal-Free Electrocatalytic Glycerol Oxidation.

Langmuir

September 2025

Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.

This research provides a constructive approach for developing high-performance polymer nanohybrids toward enhancing optoelectronic properties, fluorogenic viscosity sensing, and metal-free electrocatalytic oxidation of glycerol to value-added organic(s). Herein, reduced graphene oxide (RGO) and mildly oxidized RGO (MRGO) are strategically combined with fluorescent electroactive polymers (FEPs) to develop a promising sustainable metal-free electrocatalytic system suitable for amplifying opto-electrochemical properties, multiplatform sensing capacity, and electrocatalytic efficiency. The optimized polymeric counterpart (FEP2) promotes dual-state emission in the supramolecular network of RGO-/MRGO-incorporated fluorescent electroactive hybrid polymers (RFEHPs/MFEHPs) through physicochemically confined atypical electron-rich -C(═O)NH-/-C(═O)O-/-SOH fluorophores of (hydroxyethyl)methacrylate and 2-acrylamido-2-methylpropane-1-sulfonic acid monomers.

View Article and Find Full Text PDF

Modeling-Making-Modulating High-Entropy Alloy with Activated Water-Dissociation Centers for Superior Electrocatalysis.

J Am Chem Soc

September 2025

Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-8603, Japan.

High-entropy alloys (HEAs) have recently emerged as promising electrocatalysts for complex reactions owing to their tunable electronic structures and diverse, unique binding sites. However, their vast compositional space, in terms of both elemental variety and atomic ratios, presents a major challenge to the rational design of high-performance catalysts, as experimental efforts are often hindered by ambiguous element selection and inefficient trial-and-error methods. In this work, a bottom-up research strategy using machine learning-assisted first-principles calculations was applied to accelerate the design of quinary HEAs toward efficient multielectron transfer reactions.

View Article and Find Full Text PDF

Convergent Electrochemical-Chemical Tandem Catalysis Synthesis of Ethylene Oxide from CO and Water at Ambient Conditions.

Angew Chem Int Ed Engl

August 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Institution School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.

Ethylene oxide (EO) is an important commodity chemical, and its production currently relies on fossil fuel-based energy-intensive thermocatalysis associated with substantial CO emissions or the usage of toxic/corrosive precursors (e.g., Cl).

View Article and Find Full Text PDF

Tuning reactive chlorine species to singlet oxygen via peroxymonosulfate synergy: Ultra-efficient electrooxidation with minimal chlorinated byproducts.

J Hazard Mater

August 2025

MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China. Electronic address:

Chlorination electrooxidation (EO/Cl) systems face challenges in balancing efficient pollutant degradation with hazardous chlorinated byproduct formation and unclear formation mechanisms of active species. Here, we propose an innovative peroxymonosulfate (PMS)-mediated strategy to redirect reactive chlorine species (RCS) toward singlet oxygen (O) generation, achieving simultaneous ultra-efficient O production and chlorinated byproduct suppression. By adapting a refined quenching protocol, we identified contributions of key species (Cl/Cl, HOCl, Cl, and O), and unraveled the selective conversion mechanism of RCS to O in the EO/Cl⁻/PMS system.

View Article and Find Full Text PDF