98%
921
2 minutes
20
The biomass-derived alcohol oxidation reaction (BDAOR) holds great promise for sustainable production of chemicals. However, selective electrooxidation of alcohols to value-added aldehyde compounds is still challenging. Herein, we report the electrocatalytic BDAORs to selectively produce aldehydes using single-atom ruthenium on nickel oxide (Ru -NiO) as a catalyst in the neutral medium. For electrooxidation of 5-hydroxymethylfurfural (HMF), Ru -NiO exhibits a low potential of 1.283 V at 10 mA cm , and an optimal 2,5-diformylfuran (DFF) selectivity of 90 %. Experimental studies reveal that the neutral electrolyte plays a critical role in achieving a high aldehyde selectivity, and the single-atom Ru boosts HMF oxidation in the neutral medium by promoting water dissociation to afford OH*. Furthermore, Ru -NiO can be extended to selective electrooxidation of a series of biomass-derived alcohols to corresponding aldehydes, which are conventionally difficult to obtain in the alkaline medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202200211 | DOI Listing |
J Colloid Interface Sci
September 2025
Shanxi Center of Technology Innovation for Advanced Power Battery Material, School of Chemistry and Chemical Engineering, Shanxi Normal University, Taiyuan 030032, China. Electronic address:
Against the backdrop of global carbon neutrality target driving the transformation of energy structure, alcohol fuel cells (AFCs) show great application potential; However, the sluggish kinetics of their anodic alcohol oxidation reaction hinders the commercialization of AFCs. Metallene is a novel 2D material with potential application prospect in the field of electrocatalysis. In this paper, PdMoW trimetallene has been successfully produced by a one-pot wet-chemical method, which displays a unique two-dimensional curved ultrathin graphene structure.
View Article and Find Full Text PDFLangmuir
September 2025
Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
This research provides a constructive approach for developing high-performance polymer nanohybrids toward enhancing optoelectronic properties, fluorogenic viscosity sensing, and metal-free electrocatalytic oxidation of glycerol to value-added organic(s). Herein, reduced graphene oxide (RGO) and mildly oxidized RGO (MRGO) are strategically combined with fluorescent electroactive polymers (FEPs) to develop a promising sustainable metal-free electrocatalytic system suitable for amplifying opto-electrochemical properties, multiplatform sensing capacity, and electrocatalytic efficiency. The optimized polymeric counterpart (FEP2) promotes dual-state emission in the supramolecular network of RGO-/MRGO-incorporated fluorescent electroactive hybrid polymers (RFEHPs/MFEHPs) through physicochemically confined atypical electron-rich -C(═O)NH-/-C(═O)O-/-SOH fluorophores of (hydroxyethyl)methacrylate and 2-acrylamido-2-methylpropane-1-sulfonic acid monomers.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-8603, Japan.
High-entropy alloys (HEAs) have recently emerged as promising electrocatalysts for complex reactions owing to their tunable electronic structures and diverse, unique binding sites. However, their vast compositional space, in terms of both elemental variety and atomic ratios, presents a major challenge to the rational design of high-performance catalysts, as experimental efforts are often hindered by ambiguous element selection and inefficient trial-and-error methods. In this work, a bottom-up research strategy using machine learning-assisted first-principles calculations was applied to accelerate the design of quinary HEAs toward efficient multielectron transfer reactions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Institution School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Ethylene oxide (EO) is an important commodity chemical, and its production currently relies on fossil fuel-based energy-intensive thermocatalysis associated with substantial CO emissions or the usage of toxic/corrosive precursors (e.g., Cl).
View Article and Find Full Text PDFJ Hazard Mater
August 2025
MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China. Electronic address:
Chlorination electrooxidation (EO/Cl) systems face challenges in balancing efficient pollutant degradation with hazardous chlorinated byproduct formation and unclear formation mechanisms of active species. Here, we propose an innovative peroxymonosulfate (PMS)-mediated strategy to redirect reactive chlorine species (RCS) toward singlet oxygen (O) generation, achieving simultaneous ultra-efficient O production and chlorinated byproduct suppression. By adapting a refined quenching protocol, we identified contributions of key species (Cl/Cl, HOCl, Cl, and O), and unraveled the selective conversion mechanism of RCS to O in the EO/Cl⁻/PMS system.
View Article and Find Full Text PDF