This research provides a constructive approach for developing high-performance polymer nanohybrids toward enhancing optoelectronic properties, fluorogenic viscosity sensing, and metal-free electrocatalytic oxidation of glycerol to value-added organic(s). Herein, reduced graphene oxide (RGO) and mildly oxidized RGO (MRGO) are strategically combined with fluorescent electroactive polymers (FEPs) to develop a promising sustainable metal-free electrocatalytic system suitable for amplifying opto-electrochemical properties, multiplatform sensing capacity, and electrocatalytic efficiency. The optimized polymeric counterpart (FEP2) promotes dual-state emission in the supramolecular network of RGO-/MRGO-incorporated fluorescent electroactive hybrid polymers (RFEHPs/MFEHPs) through physicochemically confined atypical electron-rich -C(═O)NH-/-C(═O)O-/-SOH fluorophores of (hydroxyethyl)methacrylate and 2-acrylamido-2-methylpropane-1-sulfonic acid monomers.
View Article and Find Full Text PDFExcited-state intramolecular proton transfer (ESIPT)-associated dual-state emissive aliphatic dual-light emitting conducting polymers (DLECPs) having oxidation-reduction capacities are prepared polymerizing 2-acrylamido-2-methylpropane-1-sulfonic acid, methacrylic acid, and 2-methyl-3-(N-(2-methyl-1-sulfopropan-2-yl)acrylamido)propanoic acid monomers. Of as-synthesized DLECPs, nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies, fluorescent enhancements (I/I), and computational investigation indicate intriguing photophysical features in DLECP3 (optimum composition). In DLECP3, ─CONH─, ─CON<, and ─COOH subluminophores are recognized by density-functional theory (DFT)/time-dependent-DFT calculations and experimental investigations.
View Article and Find Full Text PDFHerein, natural-synthetic hybrid dual-state luminescent conducting polymers (DLCPs/DLCP1-DLCP8) possessing significant optoelectrochemical properties are strategically developed by the polymerization of prop-2-enamide, cis-butenedioic acid, 2-acrylamido-2-methylpropane-1-sulfonic acid, and in situ-generated 2-(3-acrylamidopropanamido)-2-methylpropane-1-sulfonic acid alongside the grafting of gum tragacanth. The spectroscopic data of aliphatic DLCPs affirm DLCP7 as the most stable supramolecular assembly endowing optoelectronic properties. Computational calculations identified -C(═O)NH-, -C(═O)OH, -OH, and -SOH as subluminophores.
View Article and Find Full Text PDFInitially, four synthetic fluorescent polymers (SFPs) are synthesized from α-methacrylic acid and methanolacrylamide monomers carrying -C(=O)OH and -C(=O)NH subfluorophores, respectively. Among SFPs, ∼1:1 incorporation of subfluorophores in the optimum SFP3 is explored by spectroscopic analyses. Subsequently, chitosan is incorporated in SFP3 to produce five semi-synthetic fluorescent polymers (SSFPs).
View Article and Find Full Text PDFThe strategic utilization of hazardous particulate waste in eliminating environmental pollution is an important research hotspot. Herein, abundantly available hazardous solid collagenic waste of leather industry is converted into stable hybrid nanobiocomposite (HNP@SWDC) comprising magnetic hematite nanoparticles (HNP) and solid waste derived collagen (SWDC) via co-precipitation method. The structural, spectroscopic, surface, thermal, and magnetic properties; fluorescence quenching; dye selectivity; and adsorption are explored via microstructural analyzes of HNP@SWDC and dye adsorbed-HNP@SWDC using H nuclear magnetic resonance, Raman, ultraviolet-visible, Fourier-transform infrared (FTIR), X-ray photoelectron, and fluorescence spectroscopies; thermogravimetry; field-emission scanning electron microscopy; and vibrating-sample magnetometry (VSM).
View Article and Find Full Text PDFHere, redox active aliphatic luminescent polymers (ALPs) are synthesized via polymerization of N,N-dimethyl-2-propenamide (DMPA) and 2-methyl-2-propenoic acid (MPA). The structures and properties of the optimum ALP3, ALP3-aggregate and Cu(I)-ALP3, ratiometric pH sensing, redox activity, aggregation enhanced emission (AEE), Stokes shift, and oxygen-donor selective coordination-reduction of Cu(II) to Cu(I) are explored via spectroscopic, microscopic, density functional theory-reduced density gradient (DFT-RDG), fluorescence quenching, adsorption isotherm-thermodynamics, and electrochemical methods. The intense blue and green fluorescence of ALP3 emerges at pH = 7.
View Article and Find Full Text PDFHere, four nontraditional fluorescent polymers (s) of varying ,-dimethyl-2-propenamide (DMPA) and butyl prop-2-enoate (BPE) mole ratios, i.e., 2:1 (), 4:1 (), 8:1 (), and 16:1 (), are prepared via random polymerization in water.
View Article and Find Full Text PDF