High-entropy alloys (HEAs) have recently emerged as promising electrocatalysts for complex reactions owing to their tunable electronic structures and diverse, unique binding sites. However, their vast compositional space, in terms of both elemental variety and atomic ratios, presents a major challenge to the rational design of high-performance catalysts, as experimental efforts are often hindered by ambiguous element selection and inefficient trial-and-error methods. In this work, a bottom-up research strategy using machine learning-assisted first-principles calculations was applied to accelerate the design of quinary HEAs toward efficient multielectron transfer reactions.
View Article and Find Full Text PDFDesigning 2D mesoporous metal-organic framework (MOF) nanosheets to overcome the limitations of bulk MOF counterparts, with a focus on enabling smooth mass transport, presents an attractive yet challenging endeavor. Here, a novel bottom-up interface-directed co-assembly method is presented for the synthesis of ultrathin 2D mesoporous UiO-66(Ce) nanosheets. The method utilizes an interface-directed co-assembly of amphiphilic perfluorooctanoic acid-induced lipid bilayers and spherical micelles from PS-b-PEO block copolymers to form unique 2D sandwich-like assemblies that guide the creation of 2D mesoporous UiO-66(Ce).
View Article and Find Full Text PDFBimetallic metal-organic frameworks (MOFs) exploit synergistic interactions between metal species, enabling enhanced functionalities. Here, hierarchically porous bimetallic zeolitic imidazolate frameworks with ∼10 nm mesopores are synthesized a soft-templating strategy across various Zn/Co ratios. This study demonstrates the tunability of mesoporous bimetallic MOFs, offering insights for designing functional bimetallic MOFs.
View Article and Find Full Text PDFWork function (WF) influences electron transport and intermediates adsorption, enabling charge balance and catalytic optimization for the hydrogen evolution reaction (HER). However, the understanding of the role of mesopores and the relationship between composition and WF in pristine Pt-based alloys remains lacking. Herein, various mesoporous binary Pt-M alloy films (m-Pt-M, M = Pd, Rh, and Ru) with uniform pores and elemental distributions are synthesized, providing an experimental platform to investigate this relationship.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Visible-light-driven hydrogen peroxide (HO) synthesis is a sustainable and economically viable strategy for green production. However, most metal sulfide semiconductors exhibit insufficient band potentials, limiting selectivity and quantum yield. Here, we introduce sulfur vacancies into CaInS to modify its band structure, enhancing the conduction band's reduction capability and shifting oxygen reduction from a single direct 2e pathway to a dual-pathway mechanism.
View Article and Find Full Text PDFTrimetallic systems have garnered considerable attention in (electro)catalysis due to the synergistic effects resulting from the combination of three different metals. However, achieving precise control over the positioning of various metals and understanding the relationship between structure and performance remains challenging. This study introduces an approach for synthesizing Pd@Pt@Au mesoporous nanoparticles (MNPs) with distinct core-shell Pd@Pt structures, featuring well-dispersed isolated Au islands on the outer shell, improving the plasmonic effect.
View Article and Find Full Text PDFElectrochemical adsorption offers a promising approach for the separation of monovalent cations, which is an important but challenging subject in separation science. However, progress in this area has been hampered by the lack of suitable materials with effective ion selectivity. In this work, we present the synthesis of covalent organic frameworks (COFs) functionalized with a series of crown ethers (NCx-TAB-COFs, x donate 12, 15, 18, indicating the size of crown ether) for the efficient and highly selective electrochemical capture of monovalent cations.
View Article and Find Full Text PDFOrdered pore engineering of metal-organic framework (MOF)-based catalysts by soft-template strategies can facilitate the mass transfer of reactants during heterogeneous electrocatalysis. Besides, the abundant open coordination sites generated by the removal of surfactants also open up a new avenue for incorporating active moieties within the framework; however, such studies are still limited. Herein, a mesoporous cerium-based MOF, MUiO-66(Ce), is synthesized by introducing a pluronic triblock copolymer as a template, where abundant open coordination sites are found to be present on the hexa-cerium nodes.
View Article and Find Full Text PDFThe interlayer stacking modes of 2D covalent-organic frameworks (COFs) directly influence their structural features, ultimately determining their functional output. However, controllably modulating the interlayer stacking structure in traditional 2D metal-free COFs, based on the same building blocks, remains challenging. Here, two trinuclear copper organic frameworks are synthesized successfully with different interlayer stacking structures: eclipsed AA stacking in Cu-PA-COF-AA and staggered ABC stacking in Cu-PA-COF-ABC, using the same monomers.
View Article and Find Full Text PDFHigh-entropy alloys (HEAs) are promising materials for electrochemical energy applications due to their excellent catalytic performance and durability. However, the controlled synthesis of HEAs with a well-defined structure and a uniform composition distribution remains a challenge. Herein, a soft template-assisted electrodeposition technique is used to fabricate a mesoporous HEA (m-HEA) film with a uniform composition distribution of Pt, Pd, Rh, Ru, and Cu, providing a suitable platform for investigating structure-performance relationships.
View Article and Find Full Text PDFDeveloping a reliable method for constructing mesoporous metal-organic frameworks (MOFs) with single-crystalline forms remains a challenging task despite numerous efforts. This study presents a solvent-mediated assembly method for fabricating zeolitic imidazolate framework (ZIF) single-crystal nanoparticles with a well-defined micro-mesoporous structure using polystyrene--poly(ethylene oxide) diblock copolymer micelles as a soft-template. The precise control of particle sizes, ranging from 85 to 1200 nm, is achieved by regulating nucleation and crystal growth rates while maintaining consistent pore diameters in mesoporous nanoparticles and a rhombohedral dodecahedron morphology.
View Article and Find Full Text PDFMaximizing the utilization efficiency of monatomic Fe sites in Fe-N-C catalysts poses a significant challenge for their commercial applications. Herein, a structural and electronic dual-modulation is achieved on a Fe-N-C catalyst to substantially enhance its catalytic performance. We develop a facile multi-component ice-templating co-assembly (MIC) strategy to construct two-dimensional (2D) arrays of monatomic Fe-anchored hollow carbon nanoboxes (Fe-HCBA) a novel dual-outward interfacial contraction hollowing mechanism.
View Article and Find Full Text PDFAtomically dispersed Pt-group metals are promising as nanocatalysts because of their unique geometric structures and ultrahigh atomic utilization. However, loading isolated Pt-group metals in single-atom alloys (SAAs) with distinctive bimetallic sites is challenging. In this study, we present amorphous mesoporous Ni boride (Ni-B) as an ideal substrate to uniformly disperse Pt atoms with tunable loadings (1.
View Article and Find Full Text PDFThe intrinsic roadblocks for designing promising Pt-based oxygen reduction reaction (ORR) catalysts emanate from the strong scaling relationship and activity-stability-cost trade-offs. Here, a carbon-supported Pt nanoparticle and a Mn single atom (Pt-Mn/C) as constructed Pt-Mn pairs are demonstrated to be an efficient catalyst to circumvent the above seesaws with only ∼4 wt % Pt loadings. Experimental and theoretical investigations suggest that Mn functions not only as the "assist" for Pt sites to cooperatively facilitate the dissociation of O due to the strong electronic polarization, affording the dissociative pathway with reduced HO production, but also as an electronic structure "modulator" to downshift the -band center of Pt sites, alleviating the overbinding of oxygen-containing intermediates.
View Article and Find Full Text PDFImproving catalytic performance relies heavily on the rational design of the spatial structure of electrocatalysts, achieved through exposure of active sites, acceleration of the charge/mass transfer rate, and confinement of the reactants. In this study, we have fabricated Co nanoparticles embedded in overhang eave-like hollow N-doped mesoporous carbon (Co@EMPC) by adjusting the thickness of mesoporous polydopamine (mPDA). Thanks to the abundance of short mesoporous channels within the porous structure and the tuned electronic properties resulting from heterojunction structures between metal and carbon, the prepared Co@EMPC provides increased accessibility to active sites and enhanced mass and charge transfer rates.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2024
The electroreduction of nitrate (NO) pollutants to ammonia (NH) provides a sustainable approach for both wastewater treatment and NH synthesis. However, electroreduction of nitrate requires multi-step electron and proton transfer, resulting in a sluggish reaction rate. Herein, we synthesized a Co-modified Cu/CuO catalyst supported on hollow mesoporous carbon substrates (Co/Cu/CuO-MesoC) by a one-step microwave-assisted reduction method.
View Article and Find Full Text PDFElectrocatalyst engineering from the atomic to macroscopic level of electrocatalysts is one of the most powerful routes to boost the performance of electrochemical devices. However, multi-scale structure engineering mainly focuses on the range of atomic-to-particle scale such as hierarchical porosity engineering, while catalyst engineering at the macroscopic level, such as the arrangement configuration of nanoparticles, is often overlooked. Here, a 2D carbon polyhedron array with a multi-scale engineered structure via facile chemical etching, ice-templating induced self-assembly, and high-temperature pyrolysis processes is reported.
View Article and Find Full Text PDFAlthough hollow carbon structures have been extensively studied in recent years, their interior surfaces are not fully utilized due to the lack of fluent porous channels in the closed shell walls. This study presents a tailored design of open-mouthed particles hollow cobalt/nitrogen-doped carbon with mesoporous shells (OMH-Co/NC), which exhibits sufficient accessibility and electroactivity on both the inner and outer surfaces. By leveraging the self-conglobation effect of metal sulfate in methanol, a raspberry-structured Zn/Co-ZIF (R-Zn/Co-ZIF) precursor is obtained, which is further carbonized to fabricate the OMH-Co/NC.
View Article and Find Full Text PDFConstruction of a well-defined mesoporous nanostructure is crucial for applying nonnoble metals in catalysis and biomedicine owing to their highly exposed active sites and accessible surfaces. However, it remains a great challenge to controllably synthesize superparamagnetic CoFe-based mesoporous nanospheres with tunable compositions and exposed large pores, which are sought for immobilization or adsorption of guest molecules for magnetic capture, isolation, preconcentration, and purification. Herein, a facile assembly strategy of a block copolymer was developed to fabricate a mesoporous CoFeB amorphous alloy with abundant metallic Co/Fe atoms, which served as an ideal scaffold for well-dispersed loading of Au nanoparticles (∼3.
View Article and Find Full Text PDFCarbon-based electrocatalysts with atomically dispersed Fe-N-C display promising performance for oxygen reduction reaction (ORR) amongst non-precious electrocatalysts. Nonetheless, increasing the number and utilization of Fe-N-C active sites is challenging. Designing morphologies and adjusting the pore structure of carbon-based electrocatalysts would boost the mass transfer, enhance the utilization of the active sites, and increase the overall ORR performance.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) secrete cytokines in a paracrine or autocrine manner to regulate immune response and tissue regeneration. Our previous research revealed that MSCs use the complex of Fas/Fas-associated phosphatase-1 (Fap-1)/caveolin-1 (Cav-1) mediated exocytotic process to regulate cytokine and small extracellular vesicles (EVs) secretion, which contributes to accelerated wound healing. However, the detailed underlying mechanism of cytokine secretion controlled by Cav-1 remains to be explored.
View Article and Find Full Text PDFMultiple heteroatom-doped carbons with 3D ordered macro/meso-microporous structures have not been realized by simple carbonization of metal-organic frameworks (MOFs). Herein, ordered macroporous phosphorus- and nitrogen-doped carbon (M-PNC) is prepared successfully by carbonization of double-solvent-induced MOF/polystyrene sphere (PS) precursors accompanied with spontaneous removal of the PS template, followed by post-doping. M-PNC shows a high specific surface area of 837 m g, nitrogen doping of 3.
View Article and Find Full Text PDFElectrocatalytic reduction of carbon dioxide to valuable chemicals is a sustainable technology that can achieve a carbon-neutral energy cycle in the environment. Electrochemical CO reduction reaction (CO RR) processes using metal-organic frameworks (MOFs), featuring atomically dispersed active sites, large surface area, high porosity, controllable morphology, and remarkable tunability, have attracted considerable research attention. Well-defined MOFs can be constructed to improve conductivity, introduce active centers, and form carbon-based single-atom catalysts (SACs) with enhanced active sites that are accessible for the development of CO conversion.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) hold great potential in treating patients with diabetes, but the therapeutic effects are not always achieved. Particularly, the clinical factors regulating MSC therapy in this setting are largely unknown. In this study, 24 patients with type 2 diabetes mellitus (T2DM) treated with insulin were selected to receive three intravenous infusions of stem cells from human exfoliated deciduous teeth (SHED) over the course of 6 weeks and were followed up for 12 months.
View Article and Find Full Text PDF