Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Covalent organic frameworks (COFs) are crystalline and porous organic materials attractive for photocatalysis applications due to their structural versatility and tunable optical and electronic properties. The use of photocatalysts (PCs) for polymerizations enables the preparation of well-defined polymeric materials under mild reaction conditions. Herein, we report two porphyrin-based donor-acceptor COFs that are effective heterogeneous PCs for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT). Using density functional theory (DFT) calculations, we designed porphyrin COFs with strong donor-acceptor characteristics and delocalized conduction bands. The COFs were effective PCs for PET-RAFT, successfully polymerizing a variety of monomers in both organic and aqueous media using visible light ( from 460 to 635 nm) to produce polymers with tunable molecular weights (MWs), low molecular weight dispersity, and good chain-end fidelity. The heterogeneous COF PCs could also be reused for PET-RAFT polymerization at least 5 times without losing photocatalytic performance. This work demonstrates porphyrin-based COFs that are effective catalysts for photo-RDRP and establishes design principles for the development of highly active COF PCs for a variety of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672717PMC
http://dx.doi.org/10.1039/d1sc05379eDOI Listing

Publication Analysis

Top Keywords

cofs effective
12
porphyrin-based donor-acceptor
8
donor-acceptor cofs
8
pet-raft polymerization
8
cof pcs
8
cofs
6
pcs
5
cofs efficient
4
efficient reusable
4
reusable photocatalysts
4

Similar Publications

Covalent organic frameworks (COFs) have been emerging as versatile reticular materials due to their tunable structures and functionalities, enabled by precise molecular engineering at the atomic level. While the integration of multiple components into COFs has substantially expanded their structural complexity, the strategic engineering of diverse functionalities within a single framework the random distribution of linkers with varying lengths remains largely unexplored. Here, we report a series of highly crystalline mixed-length multivariate COFs synthesized using azobenzene and bipyridine as linkers, where tuning the ratio of linkers and incorporating palladium effectively modulates the balance between near-infrared (NIR) light absorption and catalytic sites for NIR-generation of hydrogen peroxide (HO).

View Article and Find Full Text PDF

Promoting exciton dissociation of covalent organic frameworks via donor-acceptor characteristic modulation for enhanced HO photocatalytic production.

J Colloid Interface Sci

August 2025

Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt. Electronic address:

Post-synthetic modification (PSM) offers a promising approach for tailoring the compositional, structural, and electronic properties of covalent organic frameworks (COFs), thereby enhancing their exciton dissociation ability and facilitating charge transfer. The effectiveness of these approaches is largely compromised by the harsh conditions, complexity, and alteration of the original structure. Therefore, developing a facile yet effective PSM for modulating COFs' properties without altering the original geometry and/or structure is a challenge.

View Article and Find Full Text PDF

Ultralong-Lived Excitons in Metallo-Quinoline-Incorporated Covalent Organic Frameworks Promote Photoreductive Cross-Coupling.

Angew Chem Int Ed Engl

September 2025

College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, P.R. China.

Designing long-lived excitons in photocatalysts is crucial for efficient charge separation. However, most of the current organic photocatalysts are characterized by a relatively short exciton lifetime within the range of picoseconds due to localized excitons with large binding energies. Herein, we report the design of ultralong-lived excitons with a lifetime exceeding 8000 ps by constructing metallo-quinoline-incorporated covalent organic frameworks (COFs).

View Article and Find Full Text PDF

Covalent organic framework membranes for CO separation: recent advances and challenges.

Chem Commun (Camb)

September 2025

Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.

Global carbon dioxide (CO) emissions caused by the massive utilization of fossil fuels continue to rise, exacerbating the greenhouse effect. Membrane-based CO separation processes are a promising technology for carbon reduction. Covalent organic framework (COF) membranes have shown great potential in the field of gas separation due to their high porosity, tunable pore size, and chemical stability.

View Article and Find Full Text PDF

Crystalline Covalent Organic Framework Paper for Sweating Disorder Disease Analysis.

ACS Omega

August 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, P. R. China.

Abnormal sweating is closely associated with the occurrence and progression of various serious diseases, yet quantitatively and accurately assessing sweat pore function remains challenging. In this study, a crystalline covalent organic framework (COF) paper was developed for precise sweat pore analysis of sweating disorders. The delicately designed COF system achieved high-contrast sweat-responsive color change through the doping of sweat contents while showing no response to water, greatly enhancing resistance to environmental humidity interference.

View Article and Find Full Text PDF