Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, surface acoustic wave (SAW) systems are described for the removal of molecules that are unbound to micromotors, thereby lowering the detection limit of the cancer-related biomarker miRNA-21. For this purpose, in the first step, mass production of the Au/Pt bimetallic tubular micromotor was performed with a simple membrane template electrodeposition. The motions of catalytic Au/Pt micromotors in peroxide fuel media were analyzed under the SAW field effect. The changes in the micromotor speed were investigated depending on the type and concentration of surfactants in the presence and absence of SAW streaming. Our detection strategy was based on immobilization of probe dye-labeled single-stranded probe DNA (6-carboxyfluorescein dye-labeled-single-stranded DNA) to Au/Pt micromotors that recognize target miRNA-21. Before/after hybridization of miRNA-21 (for both w/o SAW and SAW streaming conditions), the changes in the speed of micromotors and their fluorescence intensities were studied. The response of fluorescence intensities was observed to be linearly varied with the increase of the miRNA-21 concentration from 0.5 to 5 nM under both w/o SAW and with SAW. The resulting fluorescence sensor showed a limit of detection of 0.19 nM, more than 2 folds lower compared to w/o SAW conditions. Thus, the sensor and behaviors of Au/Pt tubular micromotors were improved by acoustic removal systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.1c00854DOI Listing

Publication Analysis

Top Keywords

au/pt bimetallic
8
bimetallic tubular
8
tubular micromotors
8
surface acoustic
8
acoustic wave
8
au/pt micromotors
8
fluorescence intensities
8
micromotors
6
mirna-21
5
au/pt
5

Similar Publications

An one-pot method was used to prepare bimetallic nanozymes, with chitosan (CS) and l-tyrosine (L-Tyr) as stabilized dispersed colloidal solutions and a carrier for gold-platinum single atoms (Au-Pt SAs), which exhibited excellent peroxidase activity. A colorimetric method based on CS/L-Tyr/Au-Pt SAs nanozymes was constructed for the colorimetric detection of quercetin (QR) in human serum and orange juice. The synthesized bimetallic nanozymes were characterized by SEM, TEM, HAADF-STEM, FT-IR, XRD and XPS techniques to demonstrate the successful synthesis of CS/L-Tyr/Au-Pt SAs nanozymes.

View Article and Find Full Text PDF

Insights into the formation of Au@Pt dendritic core-shell nanoparticles with the aid of ultrasonication.

Sci Rep

August 2025

Department of Materials, Graduate School of Engineering, , Kyushu University, 744, Motooka, Nishi, Fukuoka, 819-0395, Japan.

Bimetallic Au@Pt dendritic core-shell nanoparticles were synthesized via co-reduction with ultrasonication, and their nanostructures were characterized to gain insights into the formation mechanism of the Pt shell on the Au core. Two types of nanoparticles, one with ultrasonication and another without, were prepared and examined by scanning transmission electron microscopy to understand the role of ultrasonication. With or without ultrasonication, a thin layer of Pt shell was present on the Au core.

View Article and Find Full Text PDF

Conventional lateral flow immunoassays (LFIAs) suffer from limited sensitivity in detecting low-abundance tumor biomarkers, primarily attributed to inefficient antibody utilization and insufficient signal intensity of nano-immunoprobes. Here, we propose a dual-enhanced LFIA integrating oriented antibody anchoring and nanozyme catalytic amplification for ultrasensitive visual detection of tumor biomarkers, denoted as DEOAN-LFIA. Bimetallic catalyst gold-platinum nanoparticles (Au@Pt NPs) were functionalized with phenylboronic acid to selectively orient antibodies via fragment crystallizable (Fc) glycans for improving antibody utilization efficiency, thereby enriching target-probe complexes on the test line (T line), realizing the first-step signal amplification.

View Article and Find Full Text PDF

Preparation of AuPt@ZIF-67 nanomaterials and their application in a flow injection chemiluminescence immunoassay.

Analyst

June 2025

The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.

Compared to natural enzymes, which are prone to deactivation, require expensive purification processes, and have stringent storage demands, nanozymes demonstrate superior stability, cost-efficiency, and customizable catalytic performance. In this study, AuPt@ZIF-67 nano-enzyme composites with high catalytic activity were constructed by loading Au and Pt nanoparticles onto zeolitic imidazolate framework-67 (ZIF-67). Capitalizing on the porous structure of ZIF-67 and the electronic synergy between the Au-Pt bimetallic components, the material demonstrated exceptional peroxidase-like activity.

View Article and Find Full Text PDF

Background: Cardiomyocytes derived from pluripotent stem cells (PSCs) hold great promise in heart damage repair in vivo and drug screening in vitro. However, PSC-derived cardiomyocytes exhibit immature structural and functional properties, which hinder their widespread application. To address this challenge, we designed bimetallic gold-platinum nanoparticles (Au@Pt NPs) endowed with intrinsic oxidase-like, peroxidase-like, and catalase-like activities and high electrical conductivity for promoting cardiomyocyte maturation.

View Article and Find Full Text PDF