98%
921
2 minutes
20
The placenta is a highly evolved, specialized organ in mammals. It differs from other organs in that it functions only for fetal maintenance during gestation. Therefore, there must be intrinsic mechanisms that guarantee its unique functions. To address this question, we comprehensively analyzed epigenomic features of mouse trophoblast stem cells (TSCs). Our genome-wide, high-throughput analyses revealed that the TSC genome contains large-scale (>1-Mb) rigid heterochromatin architectures with a high degree of histone H3.1/3.2-H3K9me3 accumulation, which we termed TSC-defined highly heterochromatinized domains (THDs). Importantly, depletion of THDs by knockdown of CAF1, an H3.1/3.2 chaperone, resulted in down-regulation of TSC markers, such as and , and up-regulation of the pluripotent marker , indicating that THDs maintain the trophoblastic nature of TSCs. Furthermore, our nuclear transfer technique revealed that THDs are highly resistant to genomic reprogramming. However, when H3K9me3 was removed, the TSC genome was fully reprogrammed, giving rise to the first TSC cloned offspring. Interestingly, THD-like domains are also present in mouse and human placental cells in vivo, but not in other cell types. Thus, THDs are genomic architectures uniquely developed in placental lineage cells, which serve to protect them from fate reprogramming to stably maintain placental function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763053 | PMC |
http://dx.doi.org/10.1101/gad.348782.121 | DOI Listing |
J Immunother Cancer
September 2025
Department of Pediatrics, Center for Childhood Cancer and Blood Disorders, Division of Heme/Onc and Bone Marrow Transplant, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
Background: Diffuse midline glioma (DMG) and glioblastoma (GBM) are aggressive brain tumors with limited treatment options. Macrophage phagocytosis is a complex, tightly regulated process governed by competing pro-phagocytic and anti-phagocytic signals. CD47-SIRPα signaling inhibits macrophage activity, while radiotherapy (RT) can enhance tumor immunogenicity.
View Article and Find Full Text PDFCell
August 2025
College of Life Sciences, Guizhou Normal University, Guiyang 550025, China; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China. Electronic address:
Haploid induction (HI) through stress-treated microspore culture has gained significant attention for over half a century, yet the molecular mechanism underlying microspore fate transition for androgenesis remains poorly understood. Here, we demonstrate that microspore-specific expression of BABY BOOM (BBM) is sufficient to induce microspore cell fate transition and in vivo androgenesis in both tobacco and rice, effectively bypassing the requirement for stress treatment. We further identify BBM-activated Androgenesis Regulator 1 (BAR1) as a novel downstream effector of BBM that promotes microspore reprogramming.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
September 2025
Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.. Electronic address:
Epigenetic regulation is fundamental to hematopoiesis, influencing stem cell fate, lineage commitment, and the development of hematologic diseases. Recent technological innovations have transitioned from traditional genetic editing towards programmable, reversible epigenetic modulation without altering the DNA sequence. This review explores the evolution of epigenetic editing platforms, from zinc finger proteins and TALEs to the transformative CRISPR-dCas9 system, and introduces next-generation technologies leveraging dCas12, dCas13, and modular RNA-guided systems.
View Article and Find Full Text PDFFront Immunol
September 2025
The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
Gastric cancer (GC) remains one of the leading causes of cancer-related mortality worldwide, with limited responses to immune checkpoint blockade (ICB) therapies in most patients. Increasing evidence indicates that the tumor immune microenvironment (TIME) plays a crucial role in immunotherapy outcomes. Among various metabolic abnormalities in the TIME, dysregulated lipid metabolism has emerged as a critical determinant of immune cell fate, differentiation, and function.
View Article and Find Full Text PDFFront Immunol
September 2025
The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
Super-enhancers (SEs) are dynamic chromatin structures that function as epigenetic hubs, orchestrating cell-type-specific transcriptional programs crucial for immune cell differentiation, functional specialization, and adaptive responses. These enhancer clusters integrate transcription factor (TF) networks, chromatin-modifying signals, and three-dimensional genome organization to govern lineage commitment, effector function acquisition, and metabolic reprogramming while enabling plasticity in response to environmental cues. SEs exhibit spatiotemporal regulatory properties, such as chromatin looping, phase-separated condensate formation, and stimulus-driven enhancer-promoter rewiring, all of which stabilize transcriptional outputs vital for immune homeostasis.
View Article and Find Full Text PDF