Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rapid and efficient isolation of intact lysosomes is necessary to study their functions and metabolites by proteomic analysis. We developed a swift and robust nanoparticle-based magnetic separation method in which magnetic-plasmonic hybrid nanoparticles (MPNPs) conjugated with amino dextran (aDxt) were targeted to the lumen of lysosomes the endocytosis pathway. For well-directed magnetic separation of the lysosomes, it is important to trace the intracellular trafficking of the aDxt-conjugated MPNPs (aDxt-MPNPs) in the endocytosis pathway. Therefore, we analyzed the intracellular transport process of the aDxt-MPNPs by investigating the time-dependent colocalization of plasmonic scattering of aDxt-MPNPs and immunostained marker proteins of organelles using the threshold Manders' colocalization coefficient (). Detailed analysis of time variations of for early and late endosomes and lysosomes allowed us to derive the transport kinetics of aDxt-MPNPs in a cell. After confirming the incubation time required for sufficient accumulation of aDxt-MPNPs in lysosomes, the lysosomes were magnetically isolated as intact as possible. By varying the elapsed time from homogenization to complete isolation of lysosomes () and temperature (), the influences of and on the protein composition of the lysosomes were investigated by polyacrylamide gel electrophoresis and amino acid analysis. We found that the intactness of lysosomes could become impaired quite quickly, and to isolate lysosomes as intact as possible with high purity, = 30 min and = 4 °C were optimal settings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c08474DOI Listing

Publication Analysis

Top Keywords

lysosomes
11
isolation intact
8
intact lysosomes
8
magnetic-plasmonic hybrid
8
hybrid nanoparticles
8
magnetic separation
8
endocytosis pathway
8
adxt-mpnps
5
quick mild
4
mild isolation
4

Similar Publications

Correction: Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots.

Nanoscale

September 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

Correction for 'Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots' by Shuang E , , 2018, , 12788-12796, https://doi.org/10.1039/C8NR03453B.

View Article and Find Full Text PDF

A cationization strategy to simultaneously enhance reactive oxygen species generation and mitochondria targeting ability for enhanced photodynamic therapy.

J Mater Chem B

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.

Mitochondria-targeted photodynamic therapy (PDT) circumvents the short lifetime and action radius limitation of reactive oxygen species (ROS) and greatly improves the anticancer PDT efficacy. However, current approaches require different molecular engineering strategies to separately improve ROS production and introduce mitochondria targeting ability, which involve tedious synthetic procedures. Herein, we report a facile one-step cationization strategy that simultaneously improves the ROS generation efficiency and introduces mitochondria targeting ability for enhanced PDT.

View Article and Find Full Text PDF

Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.

View Article and Find Full Text PDF

Objective: Osimertinib (OSI) therapy, a cornerstone in treating non-small cell lung cancer (NSCLC), has been severely limited by rapidly developing acquired resistance. Inhibition of bypass activation using a combination strategy holds promise in overcoming this resistance. Biguanides, with excellent anti-tumor effects, have recently attracted much attention for this potential.

View Article and Find Full Text PDF

TOX-induced lnc-SUMF2-8 compromises antitumor function and anti-PD-1 response of CD8 T cells via lysosome-dependent degradation of TCF-1.

Mol Ther

September 2025

Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:

The reduction of TCF-1 during CD8 T cell exhaustion leads to attenuated antitumor activity and diminished responsiveness to immune checkpoint inhibitors. However, how TCF-1 is downregulated remains unclear. Here, we showed that during CD8 T cell exhaustion, lnc-SUMF2-8, induced by transcription factor TOX, can bind to cytosolic TCF-1, and direct it to the lysosome for degradation.

View Article and Find Full Text PDF